
A Brief Introduction to Low-Rank Tensor
Decompositions

Joseph Nakao 1

1Department of Mathematical Sciences, University of Delaware

August 2022



1 Introducing (Low-Rank) Tensors

2 CANDECOMP/PARAFAC (CP) Format

3 Tucker Decomposition

4 Hierarchical Tucker (HT) Decomposition

2 / 35



Introducing (Low-Rank) Tensors

Table of Contents

1 Introducing (Low-Rank) Tensors

2 CANDECOMP/PARAFAC (CP) Format

3 Tucker Decomposition

4 Hierarchical Tucker (HT) Decomposition

3 / 35



Introducing (Low-Rank) Tensors

Key References

This lecture/talk is based on the following two references:

T.G. Kolda and B.W. Bader, Tensor Decompositions and Applications, SIAM
Review, 51:3 (2009), pp. 455-500.

K. Kormann, Low-rank tensor discretization for high-dimensional problems,
Vorlesung, SS 2017 (2017).

4 / 35



Introducing (Low-Rank) Tensors

Motivation

GOAL: to solve problems of high dimensionality with low storage and
computational complexity.

ISSUE: the curse of dimensionality.

Oftentimes, data for d−dimensional problem is stored as an order-d tensor,
XXX ∈ RN1×...×Nd , Xi1,...,id ≈ f(xi1 , ..., xid).

Computational cost and storage complexity quickly increase as d increases.

FIX: low rank tensor decompositions.

tensor decompositions reduce storage complexity.

e.g., SVD ↔ A = UΣVT

truncation for low-rank approximations of XXX .

e.g., truncated SVD

5 / 35



Introducing (Low-Rank) Tensors

Example 1

f(x, y, z) = 1 + ϵ cos (x) cos (y) cos (z)

Store as XXX ∈ RNx×Ny×Nz , Xi,j,k = f(xi, yj , zk).
Storage complexity is N3. Not great!

f(x, y, z) = 1 · 1 · 1 + ϵ cos (x) · cos (y) · cos (z)

⇕ (Can think of as separation of variables)

XXX =


1
...
1

⊗


1
...
1

⊗


1
...
1

+


ϵ cos (x1)

...
ϵ cos (xNx

)

⊗


cos (y1)

...
cos (yNy

)

⊗


cos (z1)

...
cos (zNz

)


Rank-2 tensor (two basis elements).
Store as three N × 2 frames/matrices; storage complexity 6N .

6 / 35



Introducing (Low-Rank) Tensors

What now?

ISSUE: in general, an analytic tensorization is not possible.

Q: how do we attain a (low-rank) tensor approximation?

Layout of the remainder of the lecture/talk:

1. Lots of definitions and notation.

2. Three standard tensor decompositions.

3. Sprinkle in approximation issues, error estimates, and comparisons of all three
tensor decompositions.

7 / 35



Introducing (Low-Rank) Tensors

Definitions and notation

An order-d tensor is XXX ∈ RN1×...×Nd with entries Xi1,...,id .

A mode-n fiber fixes all but the nth-index. Stored as column vectors.

A frame/slice fixes all but two indices. Stored as matrices.

(Kolda and Bader, pp. 458)

8 / 35



Introducing (Low-Rank) Tensors

cont...

We call XXX a rank-one tensor if XXX = a(1) ◦ a(2) ◦ ... ◦ a(d), for some vectors

a(n) ∈ RNn , n = 1, ..., d. Elementwise, Xi1,...,id =
d∏

n=1
a
(n)
ik

.

Note: here ◦ denotes the outer product, but some authors use ⊗.

(Kolda and Bader, pp. 459)

The rank of a tensor, rank(XXX ), is the smallest number of rank-one tensors that
generate XXX as their sum.

9 / 35



Introducing (Low-Rank) Tensors

Vectorization and Matricization

Vectorization is the process of expressing a tensor as a vector.

XXX −→ vec(XXX )

IDEA: order the mode-n fibers. The specific ordering doesn’t matter so long as
you’re consistent.

Matricization is the process of expressing a tensor as a matrix.
A mode-n matricization is

XXX −→ X(n)

IDEA: order the mode-n fibers as the columns of a matrix. The specific ordering
doesn’t matter so long as you’re consistent.

Note: there is a general matricization where the columns contain information from
more than one dimension, X(α), where α ⊆ {1, ..., d}.

10 / 35



Introducing (Low-Rank) Tensors

Example 2.

Let XXX ∈ R2×3×2 with frontal slices

[
1 3 5
2 4 6

]
and

[
7 9 11
8 10 12

]
.

X(1) =

[
1 3 5 7 9 11
2 4 6 8 10 12

]
∈ R2×6

X(2) =

1 2 7 8
3 4 9 10
5 6 11 12

 ∈ R3×4

X(3) =

[
1 2 3 4 5 6
7 8 9 10 11 12

]
∈ R2×6

vec(XXX ) = [1 2 3 4 5 6 7 8 9 10 11 12]T ∈ R12×1

11 / 35



Introducing (Low-Rank) Tensors

Tensor multiplication

We only consider “multiplying” a tensor by a matrix (or vector).

The mode-n (matrix) product of XXX ∈ RN1×...×Nd and U ∈ RM×Nn is

XXX ×n U ∈ RN1×...×Nn−1×M×Nn+1×...×Nd ,

with entries

(XXX ×n U)i1,...,in−1,m,in+1,...,id
.
=

Nn∑
in=1

Xi1,...,idUm,ik .

Think of this as taking the projection/inner product of XXX and U in the
nth-dimension.

12 / 35



Introducing (Low-Rank) Tensors

cont...

Visualization:
YYY = XXX ×n U ⇔ Y(n) = UX(n)

Continuous interpretation:

Let f(x1, x2, x3) ↔ XXX and g(x2, y) ↔ U, with xn ∈ In and y ∈ Iy.

XXX ×2 U ⇔
∫
I2

f(x1, x2, x3)g(x2, y)dx2︸ ︷︷ ︸
⟨f,g⟩2 = function of x1, y, x3

13 / 35



Introducing (Low-Rank) Tensors

Tensor products

The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is

A⊗B
.
=


A11B ... A1JB
A21B ... A2JB

...
. . .

...
AI1B ... AIJB

 ∈ RIK×JL

Note: A⊗B = [a1 ⊗ b1,a1 ⊗ b2,a1 ⊗ b3, ...,aJ ⊗ bL−1,aJ ⊗ bL]

The Hadamard product of matrices A ∈ RI×J and B ∈ RI×J is

A ∗B .
=


A11B11 ... A1JB1J

A21B21 ... A2JB2J

...
. . .

...
AI1BI1 ... AIJBIJ

 ∈ RI×J

14 / 35



Introducing (Low-Rank) Tensors

A quick recap

High-order tensors are expensive in storage and computation.

We can flatten a tensor into a matrix (or vector).

The idea of matricization will be important moving forward for these tensor
decompositions.

Any questions?

15 / 35



CANDECOMP/PARAFAC (CP) Format

Table of Contents

1 Introducing (Low-Rank) Tensors

2 CANDECOMP/PARAFAC (CP) Format

3 Tucker Decomposition

4 Hierarchical Tucker (HT) Decomposition

16 / 35



CANDECOMP/PARAFAC (CP) Format

CANonical DECOMPosition / PARAllel FACtors

IDEA: express XXX as a sum of rank-one tensors; loosely similar to a SVD.

XXX ≈
R∑

r=1

a(1)r ◦ ... ◦ a(d)r

(Kolda and Bader, pp. 463)

Can store {a(n)r : r = 1, ..., R} as frames A(n) for n = 1, ..., d.

The R that gives equality is the rank(XXX ).

Storage complexity is RdN ; much less than N3 is naturally low rank.
17 / 35



CANDECOMP/PARAFAC (CP) Format

About those low-rank tensor approximations...

With the CP format we can start discussing low-rank tensor approximations of XXX .

Q: is it possible to find the best rank-k approximation to XXX ? (Ideally with
k < rank(XXX )).
A: no.

Consider a singular value decomposition of a matrix, A =
R∑

r=1
σrur ◦ vr.

The rank-k approximation that minimizes ∥A−B∥ is B =
k∑

r=1
σrur ◦ vr.

The higher-order tensor analogue is not true! (The issue is a bit more
complicated).

18 / 35



CANDECOMP/PARAFAC (CP) Format

Border rank

ISSUE: a best rank-k approximation might not exist.
REASON: degeneracy – XXX may be approximated arbitrarily well by a rank-k
factorization.
Example 3. The space of rank-2 tensors is not closed.

Approximating a rank-3 tensor (Kolda and Bader, pp. 463)

FIX: Consider the border rank.

r̃ank(XXX )
.
= min{k : ∀ϵ > 0,∃EEE s.t. ∥EEE ∥ < ϵ, rank(XXX + EEE ) = k},

where EEE = −XXX +
k∑

r=1
λra

(1)
r ◦ ... ◦ a(d)r .

19 / 35



CANDECOMP/PARAFAC (CP) Format

Remarks and takeaways

Rank degeneracy is not an uncommon occurrence.

Rank degeneracy causes problems in practice. (See Kolda/Bader).

The vectors a
(n)
r are stored in frames/matrices A(n) ∈ RNn×Rn .

Alternating Least Squares (ALS) is the general workhorse algorithm for
computing the CP format of a tensor.

The CP format is straightforward despite this rank degeneracy. And, there
have been substantial developments on variations of the CP format (e.g.,
enforce nonnegativity constraints).

Any questions?

20 / 35



Tucker Decomposition

Table of Contents

1 Introducing (Low-Rank) Tensors

2 CANDECOMP/PARAFAC (CP) Format

3 Tucker Decomposition

4 Hierarchical Tucker (HT) Decomposition

21 / 35



Tucker Decomposition

Tucker decomposition (a.k.a. higher-order SVD / HOSVD)

IDEA: a type of higher-order PCA in which XXX is decomposed into a core tensor
GGG that is transformed by a matrix along each dimension.

XXX ≈ GGG ×d
n=1 A

(n)

Xi1,...,id ≈
J1∑

j1=1

...

Jd∑
jd=1

Gj1,...,jdA
(1)
i1,j1

...A
(d)
id,jd

As per above, the multilinear rank of the Tucker decomposition is (J1, ..., Jd).

XXX ≈ GGG ×1 A×2 B×3 C (Kolda and Bader, pp. 475)

Storage complexity is Jd +NJd.
22 / 35



Tucker Decomposition

Truncating the Tucker decomposition

Computing the HOSVD is based on the SVD of each X(n), n = 1, ..., d.

vec(XXX ) ≈ (A(d) ⊗ ...⊗A(1))vec(GGG )

X(n) = A(n)G(n)

(
A(d) ⊗ ...⊗A(n+1) ⊗A(n−1) ⊗ ...⊗A(1)

)T

DESIRE: a HOSVD with multilinear rank r = (R1, ..., Rd).

colrank(X(n)) ≤ Jn ⇒ Rn leading left singular vectors from the SVD of X(n).

RESULT: a low-rank (in the multilinear rank sense) Tucker decomposition of XXX ,

denoted by X̃XX .

23 / 35



Tucker Decomposition

Remarks and takeaways

∥∥∥XXX − X̃XX
∥∥∥ ≤

√√√√√ d∑
j=1

Nj∑
i=rj+1

(
σ
(j)
i

)2

≤
√
d min{∥XXX −YYY ∥ : YYY ∈ Tr},

where Tr is the set of all Tucker decompositions of multilinear rank r.

The Tucker decomposition comes with closedness with the notion of
multilinear rank r.

The truncated Tucker decomposition from the HOSVD-based algorithm is
not optimal.

The information held in the frames A(n), n = 1, ..., d saves storage.

The storage requirement for GGG is not very attractive for large d.

Any questions?

24 / 35



Hierarchical Tucker (HT) Decomposition

Table of Contents

1 Introducing (Low-Rank) Tensors

2 CANDECOMP/PARAFAC (CP) Format

3 Tucker Decomposition

4 Hierarchical Tucker (HT) Decomposition

25 / 35



Hierarchical Tucker (HT) Decomposition

A starting visual

A dimension tree is a binary tree T with the following properties:

(i) each node α is a cluster of modes from {1, ..., d}.
(ii) the root node is {1, ..., d}.
(iii) each leaf node is a singleton set {n}.
(iv) each parent node α is the disjoint union of its two children nodes αℓ, αr.

(assume αℓ indices are lower than αr indices).

(Kormann, pp. 15)

26 / 35



Hierarchical Tucker (HT) Decomposition

The HT decomposition (HTD)

Let Uα have rα columns that form a basis for colspace
(
X(α)

)
.

IDEA: each parent node is associated with the following decomposition:

Uα = (Uαr
⊗Uαℓ

)Bα,

for some transfer matrix/tensor Bα ∈ Rrαr rαℓ
×rα ⇔ BBBα ∈ Rrαℓ

×rαr×rα .

27 / 35



Hierarchical Tucker (HT) Decomposition

Example 4

Uα = (Uαr
⊗Uαℓ

)Bα

Start by considering α = {1, 2, 3, 4}, αℓ = {1, 2}, αr = {3, 4}.

28 / 35



Hierarchical Tucker (HT) Decomposition

Example 4 (cont...)

vec(XXX ) = X({1,2,3,4}) = U1234

= (U34 ⊗U12)B1234

=
((

(U4 ⊗U3)B34

)
⊗
(
(U2 ⊗U1)B12

))
B1234

= (U4 ⊗U3 ⊗U2 ⊗U1)(B34 ⊗B12)B1234

Storage complexity for Example 4 is 4Nr + 2r3 + r2.

Storage complexity in general is dNr + (d− 2)r3 + r2.

Takeaway: For larger d, storing the d− 1 HT transfer tensors is much cheaper
than storing the Tucker decomposition transfer tensor.

29 / 35



Hierarchical Tucker (HT) Decomposition

HTD (cont...)

Remarks:

We typically desire the orthogonalization of a HTD of a tensor. (The
columns of the mode frames Un form an orthonormal basis for all the nodes
except the root node.)

i.e., Un unitary for all n = 1, ..., d implies Uα unitary for all α ̸= {1, ..., d}.
Complexity of orthogonalization algorithm is O(dNr2 + dr4).

vec(XXX ) = (Ũ4 ⊗ Ũ3 ⊗ Ũ2 ⊗ Ũ1)(B̃34 ⊗ B̃12)B̃1234

Q: How can we compute a (low-rank) HTD?

A: Two approaches based on projections at each node.

30 / 35



Hierarchical Tucker (HT) Decomposition

The two approaches

IDEA: Define projections Wα at each node α that map into a lower-dimensional

subspace of colspace
(
X(α)

)
.

Method 1 / Algorithm 6 (Kormann, pp. 20).
Input: a tensor XXX not in HTD and desired ranks {rα : α ∈ T }.
Output: a tensor X̃XX in HTD with rank

(
X̃(α)

)
≤ rα for all α ∈ T .

Method 2 / Algorithm 7 (Kormann, pp. 21).
Input: a tensor XXX in orthogonalized HTD and desired ranks {rα : α ∈ T }.
Output: a tensor X̃XX in HTD with rank

(
X̃(α)

)
≤ rα for all α ∈ T .

Projection Wα at each node (same 4D example):

vec(X̃XX ) =
(
W4W

T
4 ⊗W3W

T
3 ⊗W2W

T
2 ⊗W1W

T
1

)
(
W34W

T
34 ⊗W12W

T
12

)
vec(XXX )

31 / 35



Hierarchical Tucker (HT) Decomposition

Method 1

IDEA: For each node α ∈ T , take rα dominant left singular vectors of X(α).

Xα = UαΣαV
T
α (SVD)

32 / 35



Hierarchical Tucker (HT) Decomposition

Method 1 (cont...)

vec(X̃XX ) =
(
W4W

T
4 ⊗W3W

T
3 ⊗W2W

T
2 ⊗W1W

T
1

)
(
W34W

T
34 ⊗W12W

T
12

)
vec(XXX )

= (W4 ⊗W3 ⊗W2 ⊗W1)(WT
4 ⊗WT

3 )W34︸ ︷︷ ︸
.
=B34

⊗ (WT
2 ⊗WT

1 )W12︸ ︷︷ ︸
.
=B12


(WT

34 ⊗WT
12)vec(XXX )︸ ︷︷ ︸

.
=B1234


∥∥∥XXX − X̃XX

∥∥∥ ≤

√√√√ ∑
α∈T ′

nα∑
i=rα+1

(
σ
(α)
i

)2

≤
√
2d− 3 min{∥XXX −YYY ∥ : YYY ∈ HTr},

where T ′ = T \{αroot, αrootℓ} and HTr is the set of all HTDs of desired
multilinear rank r.

33 / 35



Hierarchical Tucker (HT) Decomposition

Method 2

IDEA: For each node α ∈ T , define Wα using the so-called Gramians, Gα.

X(α)X
T
(α)

.
= UαGαU

T
α = (UαVα)Λα (UαVα)

T

Define Wα using the frames Uα and leading rα ≤ rank
(
X(α)

)
eigenvectors, Sα.

Wα
.
= UαSα

Note: Uα are unitary by input assumption.

vec(X̃XX ) = (U4S4 ⊗U3S3 ⊗U2S2 ⊗U1S1)(ST
4 ⊗ ST

3 )B34S34︸ ︷︷ ︸
.
=B̃34

⊗ (ST
2 ⊗ ST

1 )B12S12︸ ︷︷ ︸
.
=B̃12


(ST

34 ⊗ ST
12)B1234︸ ︷︷ ︸

.
=B̃1234



34 / 35



Hierarchical Tucker (HT) Decomposition

Summary

What did we cover?

High-dimensional problems are expensive in storage and computation.

Tensors can be flattened into matrices.

CP format reduces storage complexity to RdN , but suffers from rank
degeneracy. (But still has plenty of applications!)

Multilinear rank (J1, ..., Jd); desire low-rank (R1, ..., Rd).

Tucker decomposition reduces storage complexity to Jd +NJd. Still suffers
from curse of dimensionality, just much less.

Hierarchical Tucker decomposition reduces storage complexity to
dNr + (d− 2)r3 + r2. A solution to the curse of dimensionality for d ≥ 4.

Note: Tucker and HT are comparable for d ≤ 3.

Thank you.

35 / 35


	Introducing (Low-Rank) Tensors
	CANDECOMP/PARAFAC (CP) Format
	Tucker Decomposition
	Hierarchical Tucker (HT) Decomposition

