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Motivation

Kinetic models to describe plasmas

Why should we care?

Plasmas compose 99% of visible matter in the universe.

Space plasmas (space weather, astrophysical systems, solar physics),
laboratory fusion plasmas (magnetic confinement, inertial confinement),
electric propulsion systems, etc...

Designing next-generation high-powered systems.

Experimental iterations are expensive and time consuming.

Numerical simulations can accelerate the design iteration procedure.

Figure: AFRL Hall effect thruster, taken from AFRL website.
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Motivation

Kinetic models to describe plasmas

Plasma is a gas containing ionized atoms and/or free electrons.

Hybrid fluid electron – kinetic ion model.

Single ion species α.

Distribution function fα(x,v; t), x ∈ R3, v ∈ R3, t ∈ R+.

Algorithmic challenges:

High-dimensional simulations (e.g., 3D3V) are expensive in computation and
storage

Respect the physics: conservation, positivity preservation, equilibrium
preservation, relative entropy dissipation, etc...
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Motivation

Tensor decompositions and the CP format

A tensor XXX can be thought of as a multi-index array, e.g., XXX i,j,k ≈ f(xi, yj , zk).

(CP format) XXX ≈
R∑

r=1

a(1)r ◦ ... ◦ a(d)r ≡
R∑

r=1

 d⊗
n=1

a(n)r



(Kolda and Bader [5], pp. 463)

Discretize each dimension with N grid points.

Store {a(n)r ∈ RN : r = 1, ..., R} in frames A(n) ∈ RN×R for n = 1, ..., d.

Storage complexity is dRN ; much less than Nd if naturally low rank.
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Motivation

The 1D2V Vlasov-Leonard-Bernstein-Fokker-Planck
equation

∂fα
∂t

+ v||
∂fα
∂x

+
qα
mα

E||
∂fα
∂v||

= Cαα + Cαe, (1a)

Cαα = ναα∇v ·
(

Tα

mα
∇vfα + (v − uα)fα

)
, (1b)

Cαe = ναe∇v ·
(

Te

mα
∇vfα + (v − ue)fα

)
, (1c)

where fα is the distribution function for the single ion species α, and the charge,
mass, temperature, drift velocity, and collision frequencies for the ion species and
electron are respectively denoted by q, m, T , u, and ν.
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Motivation

The fluid electron model

Assumptions: Quasi-neutrality (nα = ne), ambipolarity (uα = ue), and Ohm’s
law (E|| =

1
qene

∂pe

∂x ).

3

2

∂pe
∂t

+
5

2

∂

∂x

(
ue,||pe

)
− ue,||

∂pe
∂x

− ∂

∂x

(
κe,||

∂Te

∂x

)
= Weα, (2a)

Weα = −

〈
mα|v|2

2
, Cαe

〉
= 3ναenα (Tα − Te) , (2b)

where pe = neTe is the electron pressure, κe,|| is the thermal conductivity, and the
velocity space L2 inner product is defined as

⟨F (v), G(v)⟩ .
= 2π

∫ ∞

−∞

∫ ∞

0

F (v)G(v)v⊥dv⊥dv||. (3)

Goal: Solve the nonlinear coupled system for fα(x, v⊥, v||, t).
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The Algorithm

The semi-discrete kinetic model

Full rank in space and low rank in velocity.

Letting [a, b] be the spatial domain in x, we assume a uniform grid

a = x1 < x2 < ... < xNx
= b,

where ∆x = xi+1 − xi, for all i = 1, 2, ..., Nx − 1.

First-order implicit-explicit (IMEX) scheme,

fk+1
α,i −∆tCk+1

αα,i−∆tCk+1
αe,i+

qα
mα

∆tEk+1
||,i

∂fk+1
α,i

∂v||
= fk

α,i−v||
∆t

∆x

(
f̂k
α,i+ 1

2
− f̂k

α,i− 1
2

)
,

(4)

where k is the time step index, f̂k
α,i+ 1

2

are the numerical fluxes at the cell

boundaries, and the collision operators are dependent on nk+1
i , uk+1

||,i , T k+1
α,i , T k+1

e,i .
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The Algorithm

Outline of the scheme

fk+1
α,i −∆tCk+1

αα,i−∆tCk+1
αe,i+

qα
mα

∆tEk+1
||,i

∂fk+1
α,i

∂v||
= fk

α,i−v||
∆t

∆x

(
f̂k
α,i+ 1

2
− f̂k

α,i− 1
2

)
1. Solve for nk+1

i , uk+1
||,i , T k+1

α,i , T k+1
e,i for LHS.

2. Discretize Ck+1
αα,i and Ck+1

αe,i using the robust structure preserving
Chang-Cooper (SPCC) method [7].

3. Discretize in velocity space, fk+1,⋆
α,i ∈ RN||×N⊥ , in tensorized CP format.

4. Solve the linear system of tensor product structure for fk+1,⋆
α,i .

5. Perform a conservative truncation for the low rank solution fk+1
α,i .

Step 1. Zeroth, first, and second order moments of the semi-discrete kinetic ion
model + semi-discrete fluid electron model. Use a quasi-Newton solver.

Step 2. Proven positivity preserving, equilibrium preserving, and relative entropy
dissipative for the full rank solution.
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The Algorithm

Step 3. CP format in 2V cylindrical coordinates

Letting [c||, d||] and [c⊥, d⊥] be the domains for the cylindrical velocity
coordinates, we assume uniform grids

c|| = v||,1 < v||,2 < ... < v||,N|| = d||, (5a)

c⊥ = v⊥,1 < v⊥,2 < ... < v⊥,N⊥ = d⊥, (5b)

where ∆v|| = v||,j1+1 − v||,j1 and ∆v⊥ = v⊥,j2+1 − v⊥,j2 , for all j1, j2.

For each spatial node xi and time tk,

fk,⋆α,i =

Rk
i∑

r=1

cki,rU
(1),k
i,r ⊗U

(2),k
i,r . (6)

⇕

fk,⋆α,i =

Rk
i∑

r=1

(
sgn(cki,r)

√
|cki,r|1v|| ∗U

(1),k
i,r

)
⊗
(√

|cki,r|1v⊥ ∗U(2),k
i,r

)
. (7)
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The Algorithm

The fully discrete kinetic formulation

fk+1
α,i −∆tCk+1

αα,i−∆tCk+1
αe,i+

qα
mα

∆tEk+1
||,i

∂fk+1
α,i

∂v||
= fk

α,i−v||
∆t

∆x

(
f̂k
α,i+ 1

2
− f̂k

α,i− 1
2

)

fk,⋆α,i =

Rk
i∑

r=1

cki,rU
(1),k
i,r ⊗U

(2),k
i,r

(A1,i ⊗ IN⊥×N⊥ + IN||×N|| ⊗A2,i)vec
(
fk+1,⋆
α,i

)
= bi (8)

Solve to get fk+1,⋆
α,i .
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The Algorithm

Step 4. An implicit solver for linear systems of tensor
product structure by Grasedyck [2]

The general solution to

(A1 ⊗ I + I ⊗A2)x =

m∑
k=1

bk1 ⊗ bk2 (9)

can be approximated by

x ≈ −
m∑

k=1

 K∑
j=−K

2wj

λmin

2⊗
i=1

(
exp

(
2tj
λmin

Ai

)
bki

), (10)

where (tj , wj) are the Stenger nodes and weights, λmin = min(Λ(A1 ⊗ I + I ⊗A2)).

Extends Stenger quadrature for scalar exponentials to matrix exponential.

Rank is m(2K + 1).
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The Algorithm

Step 5. A Local Macroscopic Conservative (LoMaC) low
rank tensor method [3]

Motivation: SVD destroys the conservation.

Idea: Define the subspace that preserves the zeroth, first, and second order
moments,

N .
= span{1, v||, v2|| + v2⊥}. (11)

f⋆ = f (M) + f (2),⋆ (12)

f (M) carries all the mass, momentum, and energy.
f (2),⋆ carries zero mass, momentum, and energy.
Truncate f (2),⋆ using an SVD-type truncation algorithm [4].
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The Algorithm

Weighted inner product space for projection

Consider the weighted L2 inner products

⟨F (v), G(v)⟩w
.
=

∫ ∞

−∞

∫ ∞

0

F (v)G(v)w(v)v⊥dv⊥dv||, (13a)

⟨F (v||), G(v||)⟩w1

.
=

∫ ∞

−∞
F (v||)G(v||)w1(v||)dv||, (13b)

⟨F (v⊥), G(v⊥)⟩w2

.
=

∫ ∞

0

F (v⊥)G(v⊥)w2(v⊥)v⊥dv⊥, (13c)

where the weight functions are defined as

w(v) = w1(v||)w2(v⊥), (14a)

w1(v||) =
exp(−v2||)v

2
||

2
, (14b)

w2(v⊥) = exp(−v2⊥)v⊥. (14c)
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The Algorithm

Discrete orthonormal basis

Discrete tensor-product orthonormal basis for N , {V1,V2,V3} given byV1 = X
(1)
1 ⊗X

(2)
1 ,V2 = X

(1)
2 ⊗X

(2)
1 ,V3 =

(
X

(1)
3 ⊗X

(2)
1 +X

(1)
1 ⊗X

(2)
2

)
√
2

 ,

(15)
whereX

(1)
1 =

1v||∥∥∥1v||

∥∥∥
w1

, X
(1)
2 =

v||∥∥∥v||

∥∥∥
w1

, X
(1)
3 =

v2
|| − c11v||∥∥∥v2

|| − c11v||

∥∥∥
w1

 , (16a)

{
X

(2)
1 =

1v⊥∥∥1v⊥

∥∥
w2

, X
(2)
2 =

v2
⊥ − c21v⊥∥∥v2

⊥ − c21v⊥

∥∥
w2

}
(16b)

are orthonormal bases with respect to the inner products ⟨·, ·⟩w1
and ⟨·, ·⟩w2

,
respectively.
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The Algorithm

Projecting the solution

Given the weights we defined, c1 = c2 and
∥∥∥v2|| − c1

∥∥∥
w1

=
∥∥v2⊥ − c2

∥∥
w2

.
= γ.

f (M) .
=

1

2π

(
n

∥1∥w
X

(1)
1 ⊗X

(2)
1 +

nu||∥∥∥v||∥∥∥
w

X
(1)
2 ⊗X

(2)
1

+

(
2(nU)− (c1 + c2)n

)
2γ

(
X

(1)
3 ⊗X

(2)
1 +X

(1)
1 ⊗X

(2)
2

))
,

(17)

where n, nu||, and nU are the ion mass, momentum, and energy.

f = f (M) + (I − PN )
(
Tϵ

(
(I − PN )(f⋆)

))
(18)
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The Algorithm

Outline of the scheme
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Numerical Results

Standing shock problem

Simulation of a Mach-5 steady-state shock.

Figure: Top row (a,b,c): evolution of the number density, drift velocity, ion temperature,
and electron temperature. Bottom row (d,e,f): conservation of mass, momentum, and
energy. Spatial mesh Nx = 51. Velocity domain [0, 8]× [−8, 10] with mesh Nv⊥ = 121,
Nv|| = 121. Stenger quadrature K = 15. Singular value tolerance ϵ = 1.0e− 05.
Time-stepping size ∆t = 0.3.
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Numerical Results

cont...

Figure: Average rank
1

Nx

Nx∑
i=1

Jk
i , where Jk

i < Rk
i .
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Numerical Results

Single ion species relaxation

∂fα
∂t

= ναα∇v ·
(

Tα

mα
∇vfα + (v − uα)fα

)
(19)

Figure: Velocity domain [0, 14]× [−14, 16] with mesh Nv⊥ = 301, Nv|| = 301. Stenger
quadrature K = 150. Singular value tolerance ϵ = 1.0e− 05. Time-stepping size
∆t = 0.3.
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Numerical Results

cont...

Figure: Top row (a,b,c): conservation of mass, momentum, and energy. Bottom row
(d,e,f): rank, L1 decay, relative entropy dissipation.
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Numerical Results

Convergence study with mesh refinement

∂fα
∂t

= ναα∇v ·
(

Tα

mα
∇vfα + (v − uα)fα

)
(20)

Table: Time-stepping with backward Euler.

Strang splitting
N|| = N⊥ L1 Error Order

41 1.17E-02 -
81 2.99E-03 1.97
161 8.19E-04 1.87
321 1.77E-04 2.21

Figure: Velocity domain [0, 14]× [−14, 16]. Stenger quadrature K = 150. Singular value
tolerance ϵ = 1.0e− 05. Time-stepping size ∆t = 0.3. Final time Tf = 1.
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Concluding Remarks

What’s next?

Take-home messages: conservative truncation in cylindrical coordinates, low
rank tensor scheme for kinetic models.

Model two or more ion species.

Modify algorithm to avoid Grasedyck’s method.

Matrix exponentials make up nearly 90% of run time.

Several quadrature nodes are required (∼100 nodes for three digits of
accuracy).

But, highly parallelizable.

Switching to a preconditioned tensorized Krylov method [6].

Dynamical low rank algorithm similar to [1].

Extend to 2D2V.

Thank you.
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