A structure preserving, conservative, low-rank tensor scheme for solving the 1D2V Vlasov-Fokker-Planck equation

Joseph Nakao ¹, William Taitano ², Jingmei Qiu ¹

 $^1\text{Department}$ of Mathematical Sciences, University of Delaware $^2\text{Aerospace}$ Systems Directorate (RQ), Air Force Research Laboratory

5th Annual Meeting of the Texas-Louisiana Section (SIAM TXLA22)

This research was supported in part by the AFOSR SFFP.

イロト イヨト イヨト イヨト

2 The Algorithm

3 Numerical Results

4 Concluding Remarks

< □ > < ⑦ > < ≧ > < ≧ > = 少へ(~ 2/28

Table of Contents

2 The Algorithm

- 3 Numerical Results
- 4 Concluding Remarks

<ロト < 部ト < 言ト < 言ト 言 のへで 3/28

Motivation

Kinetic models to describe plasmas

Why should we care?

- Plasmas compose 99% of visible matter in the universe.
- Space plasmas (space weather, astrophysical systems, solar physics), laboratory fusion plasmas (magnetic confinement, inertial confinement), electric propulsion systems, etc...
- Designing next-generation high-powered systems.
- Experimental iterations are expensive and time consuming.
- Numerical simulations can accelerate the design iteration procedure.

Figure: AFRL Hall effect thruster, taken from AFRL website.

Kinetic models to describe plasmas

- Plasma is a gas containing ionized atoms and/or free electrons.
- Hybrid fluid electron kinetic ion model.
- Single ion species α .
- Distribution function $f_{\alpha}(\mathbf{x}, \mathbf{v}; t)$, $\mathbf{x} \in \mathbb{R}^3$, $\mathbf{v} \in \mathbb{R}^3$, $t \in \mathbb{R}_+$.

Algorithmic challenges:

- High-dimensional simulations (e.g., 3D3V) are expensive in computation and storage
- Respect the physics: conservation, positivity preservation, equilibrium preservation, relative entropy dissipation, etc...

Tensor decompositions and the CP format

A tensor \mathscr{X} can be thought of as a multi-index array, e.g., $\mathscr{X}_{i,j,k} \approx f(x_i, y_j, z_k)$.

$$(\mathsf{CP format}) \qquad \mathscr{X} \approx \sum_{r=1}^{R} \mathbf{a}_{r}^{(1)} \circ ... \circ \mathbf{a}_{r}^{(d)} \equiv \sum_{r=1}^{R} \left(\bigotimes_{n=1}^{d} \mathbf{a}_{r}^{(n)} \right)$$

Fig. 3.1 CP decomposition of a three-way array.

(Kolda and Bader [5], pp. 463)

- Discretize each dimension with N grid points.
- Store $\{\mathbf{a}_r^{(n)} \in \mathbb{R}^N : r = 1, ..., R\}$ in frames $\mathbf{A}^{(n)} \in \mathbb{R}^{N \times R}$ for n = 1, ..., d.
- Storage complexity is dRN; much less than N^d if naturally low rank.

6 / 28

The 1D2V Vlasov-Leonard-Bernstein-Fokker-Planck equation

$$\frac{E_{\parallel}\hat{\mathbf{x}}}{\partial t} \stackrel{\hat{\mathbf{y}}_{\parallel}}{\rightarrow} \frac{\hat{\mathbf{y}}_{\parallel}}{\hat{\mathbf{y}}_{\parallel}}$$

$$\frac{\partial f_{\alpha}}{\partial t} + v_{\parallel} \frac{\partial f_{\alpha}}{\partial x} + \frac{q_{\alpha}}{m_{\alpha}} E_{\parallel} \frac{\partial f_{\alpha}}{\partial v_{\parallel}} = C_{\alpha\alpha} + C_{\alpha e}, \qquad (1a)$$

$$C_{\alpha\alpha} = \nu_{\alpha\alpha} \nabla_{\mathbf{v}} \cdot \left(\frac{T_{\alpha}}{m_{\alpha}} \nabla_{\mathbf{v}} f_{\alpha} + (\mathbf{v} - \mathbf{u}_{\alpha}) f_{\alpha}\right), \qquad (1b)$$

$$C_{\alpha e} = \nu_{\alpha e} \nabla_{\mathbf{v}} \cdot \left(\frac{T_{e}}{m_{\alpha}} \nabla_{\mathbf{v}} f_{\alpha} + (\mathbf{v} - \mathbf{u}_{e}) f_{\alpha}\right), \qquad (1c)$$

where f_{α} is the distribution function for the single ion species α , and the charge, mass, temperature, drift velocity, and collision frequencies for the ion species and electron are respectively denoted by q, m, T, \mathbf{u} , and ν .

Motivation

The fluid electron model

Assumptions: Quasi-neutrality $(n_{\alpha} = n_e)$, ambipolarity $(\mathbf{u}_{\alpha} = \mathbf{u}_e)$, and Ohm's law $(E_{||} = \frac{1}{q_e n_e} \frac{\partial p_e}{\partial x})$.

$$\frac{3}{2}\frac{\partial p_e}{\partial t} + \frac{5}{2}\frac{\partial}{\partial x}\left(u_{e,||}p_e\right) - u_{e,||}\frac{\partial p_e}{\partial x} - \frac{\partial}{\partial x}\left(\kappa_{e,||}\frac{\partial T_e}{\partial x}\right) = W_{e\alpha}, \qquad (2a)$$

$$W_{e\alpha} = -\left\langle \frac{m_{\alpha} |\mathbf{v}|^2}{2}, C_{\alpha e} \right\rangle = 3\nu_{\alpha e} n_{\alpha} \left(T_{\alpha} - T_{e} \right),$$
^(2b)

where $p_e = n_e T_e$ is the electron pressure, $\kappa_{e,||}$ is the thermal conductivity, and the velocity space L^2 inner product is defined as

$$\langle F(\mathbf{v}), G(\mathbf{v}) \rangle \doteq 2\pi \int_{-\infty}^{\infty} \int_{0}^{\infty} F(\mathbf{v}) G(\mathbf{v}) v_{\perp} dv_{\perp} dv_{\parallel}.$$
 (3)

Goal: Solve the nonlinear coupled system for $f_{\alpha}(x, v_{\perp}, v_{\parallel}, t)$.

4 ロト 4 日 ト 4 目 ト 4 目 ト 1 日 今 Q ()
8/28

Table of Contents

- 3 Numerical Results
- 4 Concluding Remarks

<ロト < 部ト < 差ト < 差ト 差 の Q () 9/28

The semi-discrete kinetic model

Full rank in space and low rank in velocity.

Letting [a, b] be the spatial domain in x, we assume a uniform grid

$$a = x_1 < x_2 < \dots < x_{N_x} = b,$$

where $\Delta x = x_{i+1} - x_i$, for all $i = 1, 2, ..., N_x - 1$.

First-order implicit-explicit (IMEX) scheme,

$$f_{\alpha,i}^{k+1} - \Delta t C_{\alpha\alpha,i}^{k+1} - \Delta t C_{\alpha e,i}^{k+1} + \frac{q_{\alpha}}{m_{\alpha}} \Delta t E_{||,i}^{k+1} \frac{\partial f_{\alpha,i}^{k+1}}{\partial v_{||}} = f_{\alpha,i}^{k} - v_{||} \frac{\Delta t}{\Delta x} \left(\hat{f}_{\alpha,i+\frac{1}{2}}^{k} - \hat{f}_{\alpha,i-\frac{1}{2}}^{k} \right),$$

$$(4)$$

where k is the time step index, $f_{\alpha,i+\frac{1}{2}}^k$ are the numerical fluxes at the cell boundaries, and the collision operators are dependent on n_i^{k+1} , $u_{||,i}^{k+1}$, $T_{\alpha,i}^{k+1}$, $T_{e,i}^{k+1}$.

Outline of the scheme

$$f_{\alpha,i}^{k+1} - \Delta t C_{\alpha\alpha,i}^{k+1} - \Delta t C_{\alpha e,i}^{k+1} + \frac{q_{\alpha}}{m_{\alpha}} \Delta t E_{||,i}^{k+1} \frac{\partial f_{\alpha,i}^{k+1}}{\partial v_{||}} = f_{\alpha,i}^{k} - v_{||} \frac{\Delta t}{\Delta x} \left(\hat{f}_{\alpha,i+\frac{1}{2}}^{k} - \hat{f}_{\alpha,i-\frac{1}{2}}^{k} \right)$$

- 1. Solve for n_i^{k+1} , $u_{||,i}^{k+1}$, $T_{\alpha,i}^{k+1}$, $T_{e,i}^{k+1}$ for LHS.
- 2. Discretize $C_{\alpha\alpha,i}^{k+1}$ and $C_{\alpha e,i}^{k+1}$ using the robust structure preserving Chang-Cooper (SPCC) method [7].
- 3. Discretize in velocity space, $\mathbf{f}_{\alpha,i}^{k+1,\star} \in \mathbb{R}^{N_{||} \times N_{\perp}}$, in tensorized CP format.
- 4. Solve the linear system of tensor product structure for $\mathbf{f}_{\alpha,i}^{k+1,\star}$.
- 5. Perform a conservative truncation for the low rank solution $\mathbf{f}_{\alpha,i}^{k+1}$.

Outline of the scheme

$$f_{\alpha,i}^{k+1} - \Delta t C_{\alpha\alpha,i}^{k+1} - \Delta t C_{\alpha e,i}^{k+1} + \frac{q_{\alpha}}{m_{\alpha}} \Delta t E_{||,i}^{k+1} \frac{\partial f_{\alpha,i}^{k+1}}{\partial v_{||}} = f_{\alpha,i}^k - v_{||} \frac{\Delta t}{\Delta x} \left(\hat{f}_{\alpha,i+\frac{1}{2}}^k - \hat{f}_{\alpha,i-\frac{1}{2}}^k \right)$$

- 1. Solve for n_i^{k+1} , $u_{||,i}^{k+1}$, $T_{\alpha,i}^{k+1}$, $T_{e,i}^{k+1}$ for LHS.
- 2. Discretize $C_{\alpha\alpha,i}^{k+1}$ and $C_{\alpha e,i}^{k+1}$ using the robust structure preserving Chang-Cooper (SPCC) method [7].
- 3. Discretize in velocity space, $\mathbf{f}_{\alpha,i}^{k+1,\star} \in \mathbb{R}^{N_{||} \times N_{\perp}}$, in tensorized CP format.
- 4. Solve the linear system of tensor product structure for $\mathbf{f}_{\alpha,i}^{k+1,\star}$.
- 5. Perform a conservative truncation for the low rank solution $\mathbf{f}_{\alpha,i}^{k+1}$.

Step 1. Zeroth, first, and second order moments of the semi-discrete kinetic ion model + semi-discrete fluid electron model. Use a quasi-Newton solver.

Step 2. Proven positivity preserving, equilibrium preserving, and relative entropy dissipative for the full rank solution.

The Algorithm

Step 3. CP format in 2V cylindrical coordinates

Letting $[c_{||},d_{||}]$ and $[c_{\perp},d_{\perp}]$ be the domains for the cylindrical velocity coordinates, we assume uniform grids

$$c_{||} = v_{||,1} < v_{||,2} < \dots < v_{||,N_{||}} = d_{||},$$
(5a)

$$c_{\perp} = v_{\perp,1} < v_{\perp,2} < \dots < v_{\perp,N_{\perp}} = d_{\perp},$$
(5b)

where $\Delta v_{||} = v_{||,j_1+1} - v_{||,j_1}$ and $\Delta v_{\perp} = v_{\perp,j_2+1} - v_{\perp,j_2}$, for all j_1, j_2 .

For each spatial node x_i and time t^k ,

$$\mathbf{f}_{\alpha,i}^{k,\star} = \sum_{r=1}^{R_i^k} c_{i,r}^k \mathbf{U}_{i,r}^{(1),k} \otimes \mathbf{U}_{i,r}^{(2),k}.$$
(6)

$$\mathbf{f}_{\alpha,i}^{k,\star} = \sum_{r=1}^{R_i^k} \left(\mathsf{sgn}(c_{i,r}^k) \sqrt{|c_{i,r}^k|} \mathbf{1}_{v_{||}} * \mathbf{U}_{i,r}^{(1),k} \right) \otimes \left(\sqrt{|c_{i,r}^k|} \mathbf{1}_{v_{\perp}} * \mathbf{U}_{i,r}^{(2),k} \right). \tag{7}$$

↕

The fully discrete kinetic formulation

$$f_{\alpha,i}^{k+1} - \Delta t C_{\alpha\alpha,i}^{k+1} - \Delta t C_{\alphae,i}^{k+1} + \frac{q_{\alpha}}{m_{\alpha}} \Delta t E_{||,i}^{k+1} \frac{\partial f_{\alpha,i}^{k+1}}{\partial v_{||}} = f_{\alpha,i}^k - v_{||} \frac{\Delta t}{\Delta x} \left(\hat{f}_{\alpha,i+\frac{1}{2}}^k - \hat{f}_{\alpha,i-\frac{1}{2}}^k \right)$$

$$\mathbf{f}_{\alpha,i}^{k,\star} = \sum_{r=1}^{R_i^k} c_{i,r}^k \mathbf{U}_{i,r}^{(1),k} \otimes \mathbf{U}_{i,r}^{(2),k}$$

$$(\mathbf{A}_{1,i} \otimes \mathbf{I}_{N_{\perp} \times N_{\perp}} + \mathbf{I}_{N_{||} \times N_{||}} \otimes \mathbf{A}_{2,i}) \mathsf{vec}\left(\mathbf{f}_{\alpha,i}^{k+1,\star}\right) = \mathbf{b}_{i}$$
(8)

Solve to get $\mathbf{f}_{\alpha,i}^{k+1,\star}$.

<ロト < 部ト < 言ト < 言ト こ の Q (で 13/28)

Step 4. An implicit solver for linear systems of tensor product structure by Grasedyck [2]

The general solution to

$$(A_1 \otimes I + I \otimes A_2)x = \sum_{k=1}^m b_1^k \otimes b_2^k$$
(9)

can be approximated by

$$x \approx -\sum_{k=1}^{m} \left(\sum_{j=-K}^{K} \frac{2w_j}{\lambda_{min}} \bigotimes_{i=1}^{2} \left(\exp\left(\frac{2t_j}{\lambda_{min}} A_i\right) b_i^k \right) \right), \tag{10}$$

where (t_j, w_j) are the Stenger nodes and weights, $\lambda_{min} = \min(\Lambda(A_1 \otimes I + I \otimes A_2))$.

- Extends Stenger quadrature for scalar exponentials to matrix exponential.
- Rank is m(2K+1).

Step 5. A Local Macroscopic Conservative (LoMaC) low rank tensor method [3]

Motivation: SVD destroys the conservation.

Idea: Define the subspace that preserves the zeroth, first, and second order moments,

$$\mathcal{N} \doteq \mathsf{span}\{1, v_{||}, v_{||}^2 + v_{\perp}^2\}.$$
(11)

$$\mathbf{f}^{\star} = \mathbf{f}^{(M)} + \mathbf{f}^{(2),\star} \tag{12}$$

イロト イヨト イヨト イヨト 三日

 $\mathbf{f}^{(M)}$ carries all the mass, momentum, and energy. $\mathbf{f}^{(2),\star}$ carries zero mass, momentum, and energy. Truncate $\mathbf{f}^{(2),\star}$ using an SVD-type truncation algorithm [4]. The Algorithm

Weighted inner product space for projection

Consider the weighted L^2 inner products

$$\langle F(\mathbf{v}), G(\mathbf{v}) \rangle_{w} \doteq \int_{-\infty}^{\infty} \int_{0}^{\infty} F(\mathbf{v}) G(\mathbf{v}) w(\mathbf{v}) v_{\perp} dv_{\perp} dv_{\parallel}, \qquad (13a)$$

$$\langle F(v_{||}), G(v_{||}) \rangle_{w_1} \doteq \int_{-\infty}^{\infty} F(v_{||}) G(v_{||}) w_1(v_{||}) dv_{||},$$
 (13b)

$$\langle F(v_{\perp}), G(v_{\perp}) \rangle_{w_2} \doteq \int_0^\infty F(v_{\perp}) G(v_{\perp}) w_2(v_{\perp}) v_{\perp} dv_{\perp}, \qquad (13c)$$

where the weight functions are defined as

$$w(\mathbf{v}) = w_1(v_{||})w_2(v_{\perp}),$$
 (14a)

$$w_1(v_{||}) = \frac{\exp(-v_{||}^2)v_{||}^2}{2},$$
(14b)

$$w_2(v_{\perp}) = \exp(-v_{\perp}^2)v_{\perp}.$$
 (14c)

イロト イヨト イヨト イヨト 三日

16 / 28

Discrete orthonormal basis

Discrete tensor-product orthonormal basis for $\mathcal{N}\text{, }\{\mathbf{V}_1,\mathbf{V}_2,\mathbf{V}_3\}$ given by

$$\left\{ \mathbf{V}_{1} = \mathbf{X}_{1}^{(1)} \otimes \mathbf{X}_{1}^{(2)}, \mathbf{V}_{2} = \mathbf{X}_{2}^{(1)} \otimes \mathbf{X}_{1}^{(2)}, \mathbf{V}_{3} = \frac{\left(\mathbf{X}_{3}^{(1)} \otimes \mathbf{X}_{1}^{(2)} + \mathbf{X}_{1}^{(1)} \otimes \mathbf{X}_{2}^{(2)}\right)}{\sqrt{2}} \right\},$$
(15)

where

$$\begin{cases} \mathbf{X}_{1}^{(1)} = \frac{\mathbf{1}_{v_{||}}}{\left\|\mathbf{1}_{v_{||}}\right\|_{w_{1}}}, \quad \mathbf{X}_{2}^{(1)} = \frac{\mathbf{v}_{||}}{\left\|\mathbf{v}_{||}\right\|_{w_{1}}}, \quad \mathbf{X}_{3}^{(1)} = \frac{\mathbf{v}_{||}^{2} - c_{1}\mathbf{1}_{v_{||}}}{\left\|\mathbf{v}_{||}^{2} - c_{1}\mathbf{1}_{v_{||}}\right\|_{w_{1}}} \end{cases}, \quad (16a) \\ \begin{cases} \mathbf{X}_{1}^{(2)} = \frac{\mathbf{1}_{v_{\perp}}}{\left\|\mathbf{1}_{v_{\perp}}\right\|_{w_{2}}}, \quad \mathbf{X}_{2}^{(2)} = \frac{\mathbf{v}_{\perp}^{2} - c_{2}\mathbf{1}_{v_{\perp}}}{\left\|\mathbf{v}_{\perp}^{2} - c_{2}\mathbf{1}_{v_{\perp}}\right\|_{w_{2}}} \end{cases} \end{cases}$$
(16b)

are orthonormal bases with respect to the inner products $\langle \cdot, \cdot \rangle_{w_1}$ and $\langle \cdot, \cdot \rangle_{w_2}$, respectively.

Projecting the solution

/

Given the weights we defined, $c_1 = c_2$ and $\left\| v_{||}^2 - c_1 \right\|_{w_1} = \left\| v_{\perp}^2 - c_2 \right\|_{w_2} \doteq \gamma$.

$$\mathbf{f}^{(M)} \doteq \frac{1}{2\pi} \left(\frac{n}{\|\mathbf{1}\|_{w}} \mathbf{X}_{1}^{(1)} \otimes \mathbf{X}_{1}^{(2)} + \frac{nu_{||}}{\|v_{||}\|_{w}} \mathbf{X}_{2}^{(1)} \otimes \mathbf{X}_{1}^{(2)} + \frac{(2(nU) - (c_{1} + c_{2})n)}{2\gamma} \left(\mathbf{X}_{3}^{(1)} \otimes \mathbf{X}_{1}^{(2)} + \mathbf{X}_{1}^{(1)} \otimes \mathbf{X}_{2}^{(2)} \right) \right),$$
(17)

where n, $nu_{||}$, and nU are the ion mass, momentum, and energy.

$$\mathbf{f} = \mathbf{f}^{(M)} + (I - P_{\mathcal{N}}) \left(T_{\epsilon} \left((I - P_{\mathcal{N}}) (\mathbf{f}^{\star}) \right) \right)$$
(18)

Outline of the scheme

$$f_{\alpha,i}^{k+1} - \Delta t C_{\alpha\alpha,i}^{k+1} - \Delta t C_{\alpha e,i}^{k+1} + \frac{q_{\alpha}}{m_{\alpha}} \Delta t E_{||,i}^{k+1} \frac{\partial f_{\alpha,i}^{k+1}}{\partial v_{||}} = f_{\alpha,i}^k - v_{||} \frac{\Delta t}{\Delta x} \left(\hat{f}_{\alpha,i+\frac{1}{2}}^k - \hat{f}_{\alpha,i-\frac{1}{2}}^k \right)$$

1. Solve for
$$n_i^{k+1}$$
, $u_{||,i}^{k+1}$, $T_{\alpha,i}^{k+1}$, $T_{e,i}^{k+1}$ for LHS.

- 2. Discretize $C_{\alpha\alpha,i}^{k+1}$ and $C_{\alpha e,i}^{k+1}$ using the robust structure preserving Chang-Cooper (SPCC) method [7].
- 3. Discretize in velocity space, $\mathbf{f}_{\alpha,i}^{k+1,\star} \in \mathbb{R}^{N_{||} \times N_{\perp}}$, in tensorized CP format.
- 4. Solve the linear system of tensor product structure for $\mathbf{f}_{lpha,i}^{k+1,\star}.$
- 5. Perform a conservative truncation for the low rank solution $\mathbf{f}_{\alpha,i}^{k+1}$.

Table of Contents

Motivation

- 2 The Algorithm
- **3** Numerical Results
- 4 Concluding Remarks

<ロト < 部ト < 言ト < 言ト 差 の < (で) 20/28

Standing shock problem

Simulation of a Mach-5 steady-state shock.

Figure: Top row (a,b,c): evolution of the number density, drift velocity, ion temperature, and electron temperature. Bottom row (d,e,f): conservation of mass, momentum, and energy. Spatial mesh $N_x = 51$. Velocity domain $[0,8] \times [-8,10]$ with mesh $N_{v_{\perp}} = 121$, $N_{v_{||}} = 121$. Stenger quadrature K = 15. Singular value tolerance $\epsilon = 1.0e - 05$. Time-stepping size $\Delta t = 0.3$.

cont...

22 / 28

E

イロト イヨト イヨト イヨト

Single ion species relaxation

Figure: Velocity domain $[0, 14] \times [-14, 16]$ with mesh $N_{v_{\perp}} = 301$, $N_{v_{||}} = 301$. Stenger quadrature K = 150. Singular value tolerance $\epsilon = 1.0e - 05$. Time-stepping size $\Delta t = 0.3$.

Numerical Results

cont...

Figure: Top row (a,b,c): conservation of mass, momentum, and energy. Bottom row (d,e,f): rank, L^1 decay, relative entropy dissipation.

Convergence study with mesh refinement

$$\frac{\partial f_{\alpha}}{\partial t} = \nu_{\alpha\alpha} \nabla_{\mathbf{v}} \cdot \left(\frac{T_{\alpha}}{m_{\alpha}} \nabla_{\mathbf{v}} f_{\alpha} + (\mathbf{v} - \mathbf{u}_{\alpha}) f_{\alpha} \right)$$
(20)

Table: Time-stepping with backward Euler.

Strang splitting		
$N_{ } = N_{\perp}$	L^1 Error	Order
41	1.17E-02	-
81	2.99E-03	1.97
161	8.19E-04	1.87
321	1.77E-04	2.21

Figure: Velocity domain $[0, 14] \times [-14, 16]$. Stenger quadrature K = 150. Singular value tolerance $\epsilon = 1.0e - 05$. Time-stepping size $\Delta t = 0.3$. Final time $T_f = 1$.

Table of Contents

1 Motivation

- 2 The Algorithm
- 3 Numerical Results
- 4 Concluding Remarks

What's next?

Take-home messages: conservative truncation in cylindrical coordinates, low rank tensor scheme for kinetic models.

- Model two or more ion species.
- Modify algorithm to avoid Grasedyck's method.

Matrix exponentials make up nearly 90% of run time.

Several quadrature nodes are required (\sim 100 nodes for three digits of accuracy).

But, highly parallelizable.

Switching to a preconditioned tensorized Krylov method [6].

Dynamical low rank algorithm similar to [1].

• Extend to 2D2V.

What's next?

Take-home messages: conservative truncation in cylindrical coordinates, low rank tensor scheme for kinetic models.

- Model two or more ion species.
- Modify algorithm to avoid Grasedyck's method.

Matrix exponentials make up nearly 90% of run time.

Several quadrature nodes are required (${\sim}100$ nodes for three digits of accuracy).

But, highly parallelizable.

Switching to a preconditioned tensorized Krylov method [6].

Dynamical low rank algorithm similar to [1].

• Extend to 2D2V.

Thank you.

イロト イヨト イヨト イヨト 二日

- Lukas Einkemmer, Jingwei Hu, and Yubo Wang. "An asymptotic-preserving dynamical low-rank method for the multi-scale multi-dimensional linear transport equation". In: *Journal of Computational Physics* 439 (2021), p. 110353.
- [2] Lars Grasedyck. "Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure". In: *Computing* 72.3 (2004), pp. 247–265.
- [3] Wei Guo and Jing-Mei Qiu. "A Local Macroscopic Conservative (LoMaC) low rank tensor method for the Vlasov dynamics". In: arXiv preprint arXiv:2207.00518 (2022).
- [4] Wei Guo and Jing-Mei Qiu. "A low rank tensor representation of linear transport and nonlinear Vlasov solutions and their associated flow maps". In: *Journal of Computational Physics* 458 (2022), p. 111089.
- [5] Tamara G Kolda and Brett W Bader. "Tensor decompositions and applications". In: SIAM review 51.3 (2009), pp. 455–500.
- [6] Daniel Kressner and Christine Tobler. "Krylov subspace methods for linear systems with tensor product structure". In: SIAM J. Matrix Anal. Appl. 31.4 (2010), pp. 1688–1714.
- [7] Lorenzo Pareschi and Mattia Zanella. "Structure preserving schemes for nonlinear Fokker–Planck equations and applications". In: Journal of Scientifica