
A Mathematica Reference Guide (for
calculus students)

Written by Joseph Nakao
Last updated 31 August 2021

This is an introductory reference guide on basic functions and commands in Mathematica intended to
help the typical calculus student. The reader should think of this guide as more of a “handbook,” rather
than notes or a lab. I have included the functions most commonly seen in introductory calculus
courses. This guide by no means exhaustive. More details on Mathematica can be found easily online
(see the documentation), as well as in the phenomenal book “Mathematica: A Problem-Centered
Approach” by Roozbeh Hazrat.

The outline of these notes are as follows:
 1. General formatting of .nb notebooks/files and warnings
 2. Getting started
 3. How to type mathematical symbols in the “text” style format
 4. How to type/use mathematical symbols in a cell
 5. Functions
 6. Limits and solving equations
 7. Plotting functions
 8. Differentiation
 9. Integration (Single, Double, Triple Integrals)
 10. Vectors and Vector Fields
 11. Parameterizations, Line Integrals, Surface Integrals
 12. Sum[] with applications to Riemann sums and convergent series
 13. Lists and Loops
 14. Tables
 15. Manipulate[]

1. General formatting of .nb notebooks/files
and warnings

Some general introductory pieces of advice that I explain more in detail are:
- “Enter/Return” changes to a new line, just like you would in Microsoft Word.

Printed by Wolfram Mathematica Student Edition

- To change cells, simply click the down arrow on your keyboard.
- “Shift + Enter” will command Mathematica to execute a cell.
- If you ever want to delete any part of a cell, click the vertical bar (see the right of the screen) and
“DELETE.”

In my experience working with students, the most confusing things about (first) using Mathematica are:
 Q1. What’s the difference between a cell and a text cell?
 Q2. How do I delete unwanted cells and outputs in Mathematica?
 Q3. HELP! Mathematica was working a second ago, but now it’s broken!

 To answer these questions and concerns...

 A1. The difference between a cell and a text cell are that: a CELL is a “box” where you “do math”
(i.e., whenever you’re actually doing math); a TEXT CELL is a “box” where you want to just type
text (e.g., how I am typing this very sentence).

 Mathematica automatically defaults you to a cell to start “doing math.” If you ever want to put a CELL
in between two (text) cells, simply click the space between them (see image below). Notice the line
across the middle of the page where I have clicked the space between the blue highlighted (text) cell
and the cell underneath.

To start a TEXT CELL, in the top bar (e.g., file, edit, insert, format, etc...), you’ll want to go to “Format” ->
“Style” -> “Title, text, etc...” for typing text. For a general TEXT CELL click “text.” Chapter titles and such
correspond to the other options. See the image below.

2 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

A2. If you ever want to delete a bunch of previous outputs, simply click the vertical bar on the
right of the screen and then click the “delete” key on your keyboard (see the image below for an
example). If I delete the blue bar highlighted, then Out[12]=9 will be deleted.

WARNING!!! If you delete a cell or output, then the variables will still be saved and might need to be
cleared. In other words, let’s say you let x = 9 and computed x2; this will output 81. But even if you
delete this entire cell (inputs and outputs), x will still be equal to 9.

A3. Sometimes Mathematica will just stop working. You might’ve plotted a function before, but
suddenly now it won’t show. A common trick is to quit and restart the kernel. The kernel can be
thought of as where the computer does all the work. Sometimes the kernel just gets a bit over-
whelmed, so we give it a fresh start.
As seen in the image below, go to “Evaluation” -> “Quit Kernel” -> “Local”, then click yes when the
computer asks if you’re sure you want to do this. Repeat to restart but with “Start Kernel.”

MathematicaGuide.nb 3

Printed by Wolfram Mathematica Student Edition

Some warnings/tips (WT) for coding in Mathematica:

WT1 -- Standard mathematical objects and commands need to be capitalized and use brackets
(NOT parentheses). For instance, if you ever want to use π in a cell, use must type “Pi” and if you
want the square root of 81 you type “Sqrt[81]”. I demonstrate below what happens when you do
not do this.

Notice that Mathematica doesn’t know what “pi” means; it’s literally just reading it as the two letters p
and i put together. However, whenever Mathematica sees it as “Pi” it knows that that is π.

In[]:= pi

Pi

Out[]= pi

Out[]= π

Now notice below that just like with capitalizing “Pi” we must capitalize the function “Sqrt” and also
use square brackets. Notice that only when we capitalize “Sqrt” and use square brackets does it do
what we want. I talk more about this when I discuss functions.

In[]:= sqrt 81

sqrt[81]

Sqrt 81

Sqrt[81]

Out[]= 81 sqrt

Out[]= sqrt[81]

Out[]= 81 Sqrt

Out[]= 9

WT2 -- If you want to add stuff to an existing cell, you MUST click inside the cell. Be very careful. If
you just click the “down arrow” key, you still start a new cell.
Example -- say I already had a cell that found x2 for x = 4. But, let’s say I realized an assignment wanted
me to also compute x3 for x = 4.
Below, I show what NOT to do.

4 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

(I already had a cell that found x2 for x = 4)

In[]:= x = 4

x^2

Out[]= 4

Out[]= 16

(I now click inside the cell and click the “down arrow” key). Notice by looking at the bars on the right of
the screen, x3 is now in a different cell.

In[]:= x = 4

x^2

In[]:= x^3

Out[]= 64

(I do the CORRECT thing, where I just click the “Enter/Return” key and type everything in A SINGLE
CELL)

In[]:= x = 4

x^2

x^3

Out[]= 4

Out[]= 16

Out[]= 64

WT3 -- Only type text in a TEXT CELL. If you type text in a CELL, then Mathematica is going to try
to read it like code.
As you might imagine, this will confuse Mathematica quite a lot. I show below what happens in this
case. Notice that I ask to compute x2 for x = 4, but nothing outputs.

In[]:= EXAMPLE - here I am typing text in a regular cell. Things are going to go awful if I try to do math,

such as

x = 4

x^2

WT4 -- If you want to type text in a CELL, you may do so as long as the text is in between (* and *).
Shown below is an example.

MathematicaGuide.nb 5

Printed by Wolfram Mathematica Student Edition

In[]:= (* I am typing text in a normal cell*)

x = 4

x^2

Out[]= 4

Out[]= 16

WT5 -- If you ever want to suppress something in a cell (i.e., don’t want it to show up in the out-
put), then end the line with a semicolon.

(* Without a semicolon, the line will show in the output *)

x = 4

Out[]= 4

(* With a semicolon, the line will not show in the output *)

x = 4;

WT6 -- (see the section on functions). If you use a letter to define a function but want to use it
again, you MUST CLEAR that variable.
For example, say you use “f” for f[x_]:=x^2. But later on you want to use “f” for f[x_]:=Sqrt[x] + 4. Then,
you must Clear[f] before using it the second time; in fact, if you plan to use “f” more than once in a
document, I recommend clearing “f” before each time.
I give an example below.

In[]:= Clear[f]

f[x_] := x^2

f[2]

Clear[f]

f[x_] := Sqrt[x] + 4

f[2]

Out[]= 4

Out[]= 4 + 2

WT7 -- If you want to force an answer to be a decimal, try writing one of the numbers with a
decimal. If you also want to further simplify an answer, use the command FullSimplify[].
I give an example of these cases below.

6 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

In[]:= h[x_] := 1  4 * Pi * 1  Sqrt[x^2 - 3] + 1  Sqrt[x^2 + 3] + 1  Pi

h[5]

h[5.0]

FullSimplify[h[5]]

Out[]=

1

π
+

1

2 7
+ 1

22

4 π

Out[]= 0.350315

Out[]=

616 + 11 7 + 7 22

616 π

2. Getting started
I shall demonstrate how to type and execute a cell.
NOTE to execute a cell, you must click “SHIFT” + “ENTER/RETURN” (at least on a PC).

INSTRUCTIONS -- write a short code in a single cell that will compute the quadratic formula for any
given a, b, c to solve the equation a x2 + b x + c = 0.

In[]:= (* Here, I want to declare what a, b, and c are *)

a = 1;

b = 0;

c = -4;

x1 = -b + Sqrt[b^2 - 4 * a * c]  2 * a

x2 = -b + Sqrt[b^2 - 4 * a * c]  2 * a

Out[]= 2

Out[]= 2

3. How to type mathematical symbols in the
“text” style format

If you want to type math in a text cell, click “CTRL+9,” and use “CTRL” with any special command (e.g.,
“CTRL+6” for an exponent/superscript).
Ex. The Pythagorean theorem is a2 + b2 = c2.

Some commands that are nice to know (assuming you’ve already clicked CTRL+9 to type math) are:

“CTRL” + “-” for a subscript. Ex. x1

“CTRL” + “7” to type above. Ex. x˜

“CTRL” + “/” for division. Ex. 2
3

MathematicaGuide.nb 7

Printed by Wolfram Mathematica Student Edition

If you want to type mathematical symbols, we enter a word between esc and esc. For example, to type
π, you type “esc pi esc.”

π -- esc pi esc
∇ -- esc del esc
× -- esc * esc (to be used for cross products)
· -- esc . esc (to be used for dot products)
α -- esc alpha esc
β -- esc beta esc
γ -- esc gamma esc
δ -- esc delta esc
Δ -- esc Delta esc
∇ -- esc del esc
∂ -- esc pd esc
≤ -- esc <= esc
≥ -- esc >= esc
≡ -- esc === esc

The list goes on...you can look online or in a book many of these commands. As for Greek letters, if
you’re in a fraternity or sorority, you’ll probably be fine with figuring out the Greek alphabet
commands!

4. How to type/use mathematical symbols in a
cell

Typically, we use letters like x, y and z when doing math. However, sometimes we use Greek letters.
You can do this by simply using the same commands as given in the previous section. I give the same
quadratic formula example, but with Greek letters instead of a, b, c.

In[]:= α = 1;

β = 0;

γ = -4;

x1 = -β + Sqrt[β^2 - 4 * α * γ]  2 * α

x2 = -β - Sqrt[β^2 - 4 * α * γ]  2 * α

Out[]= 2

Out[]= -2

8 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

5. Functions
REMINDER most commands in Mathematica use closed brackets [] instead of open (). Be
careful!
Q -- what is a function in Mathematica?
A -- it’s sort of like instructions. You tell it what to take in (the input), and it will spit out the output.

There are two types of functions in Mathematica: (1) the built-in functions such as Plot[], Manipulate[],
and Sum[]; (2) the functions that you build yourself.

As we know with basic functions from calculus (e.g., f(x, y) = x2 + y2), we have INDEPENDENT variables
and a DEPENDENT variable.
Here are some rules to follow when building functions:

1. The dependent variable will be whatever you name the function.
WARNING 1 -- Never name a function with a capital letter (e.g., F[x_]:=x^2) because Mathematica
already has built-in functions that use some capital letters.
WARNING 2 -- If you go back and change a function, then you’ll need to “SHIFT” + “ENTER” the cell, as
well as all subsequent cells. This is because if you change the function, then everything that followed
afterwards that used the function must be updated to this new function.
2. The independent variables must be followed by underscores when defining the function.
3. You must use brackets (not parentheses) when defining a function.
4. You must use a colon + equal sign to define the function. For example, f[x_]:=x^2 instead of f[x_]=x^2.

Below, I give a few examples.

Example 1. f(x) = x2 +1

In[]:= f[x_] := x^2 + 1;

f[2]

Out[]= 5

In[]:= x = 4

f[x]

Out[]= 4

Out[]= 17

MathematicaGuide.nb 9

Printed by Wolfram Mathematica Student Edition

Example 2. g(x, y, z) = x2sin(y) +e5 z

In[]:= g[x_, y_, z_] := x^2 * Sin[y] + Exp[5 * z]

g[1, 2, 3]

Out[]= ⅇ15 + Sin[2]

Example 3. Solving a quadratic polynomial.

A function in Mathematica doesn’t only have to be literally a function like f(x) = x2. As mentioned
earlier, it is like a “set of instructions,” or rather think of it like a recipe. Say I want to make a recipe that
will give me the solutions to the quadratic formula. The ingredients (i.e., inputs) need to be a, b, c.

In[]:= pythagorean1[a_, b_, c_] := -b + Sqrt[b^2 - 4 * a * c]  2 * a

pythagorean2[a_, b_, c_] := -b - Sqrt[b^2 - 4 * a * c]  2 * a

pythagorean1[1, 0, -4]

pythagorean2[1, 0, -4]

Out[]= 2

Out[]= -2

6. Limits and solving equations
Oftentimes, we want to compute the limits of functions. The basic built-in function Limit[] in Mathemat-
ica is as follows:
(In 1D) Limit[f[x],x -> value]

When solving equations (e..g, solve x2 + y2 = 1), we use “double equal signs.” I show this in examples 4
and 5.

10 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

Example 1. limx→1
x2-1
x-1 .

In[]:= (* METHOD 1 - hardcoding the function directly *)

(* i.e., we simply just type the function into Limit[] *)

Clear[x] (* note -- if you defined "x" earlier, you might need to Clear[x] *)

Limitx^2 - 1  x - 1, x → 1

(* METHOD 2 - defining a function f[x] *)

Clear[f] (* we used f earlier in these notes, so we Clear[f] *)

f[x_] := x^2 - 1  x - 1

Limit[f[x], x → 1]

(* note -- we DO NOT use an underscore after defining the function *)

Out[]= 2

Out[]= 2

Example 2. Show that lim(x,y)→(0,0)
x2-3 y2

x2+2 y2 DNE by showing the limit going to (0,0)

along the x-axis is different that the limit going to (0,0) along the y-axis.

In[]:= Clear[f]

f[x_, y_] := x^2 - 3 * y^2  x^2 + 2 * y^2

Limit[f[x, y], {x, y} → {0, 0.001}] (*the limit on the y-axis close to the origin*)

Limit[f[x, y], {x, y} → {0.001, 0}] (*the limit on the x-axis close to the origin*)

Limit[f[x, y], {x, y} → {0, 0}] (*the actual limit at the origin*)

Out[]= -1.5

Out[]= 1.

Out[]= Indeterminate

Example 3. Limit definition of the derivative.

Using the limit definition of the derivative, show the derivative of f(x) = sin(x) is f ' (x) = cos(x).

In[]:= Clear[f]

f[x_] := Sin[x]

Limitf[x + h] - f[x]  h, h → 0

Out[]= Cos[x]

MathematicaGuide.nb 11

Printed by Wolfram Mathematica Student Edition

Example 4. Solve x2 +2 x - 15 = 0.

In[]:= Clear[f]

f[x_] := x^2 + 2 * x - 15

Solve[f[x] ⩵ 0, x]

(* note -- to get rid of the outer set of parentheses,

you can use the Flatten[] command *)

Out[]= {{x → -5}, {x → 3}}

In[]:= Flatten[Solve[f[x] ⩵ 0, x]]

Out[]= {x → -5, x → 3}

Example 5. Solve x2 + y2 -2 x y = 0.

Note that this solution is going to be a function! As shown below, the solution to this equation is y = x.
We know this because x2 - 2 x y + y2 = (x - y)2.

In[]:= Clear[f]

f[x_, y_] := x^2 + y^2 - 2 * x * y

Flatten[Solve[f[x, y] ⩵ 0, {x, y}]]

Solve: Equations may not give solutions for all "solve" variables.

Out[]= {y → x}

7a. Plotting functions (y = f(x))
Here, I talk about how to plot explicit functions of the form y = f(x).

The (basic) instructions for Mathematica’s built-in “Plot” function are Plot[f[x],{x,a,b},Axes->True,A-
xesLabel->{“x”,”y”},PlotStyle -> Red]

Let’s break down the Plot[] function into each component!
1. f[x] is the function you want to plot.
2. {x,a,b} is how you specify the bounds for x
3. Axes->True is how to decide whether or not you want axes to show. You can choose either True or
False.
4. PlotStyle->Red is how to decide what color to make the plot. You could choose other colors instead
of just red.

NOTE There are MANY additional features you can add to a plot such as showing axes, titles,
labels, shading, etc... You can look up online how to alter the Plot[] command to do such things. I given
an example below where I use a few different features.

12 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

Example 1. Plotting sin(x)

In[]:= y[x_] := Sin[x]

Plot[y[x], {x, -Pi, Pi}, Axes → True, AxesLabel → {"x", "y"}, PlotStyle → Red]

(*adding labels*)

Plot[y[x], {x, -Pi, Pi}, Axes → True, AxesLabel → {"x", "y"},

Filling → Axis, FillingStyle → Automatic] (*shading*)

Plot[y[x], {x, -Pi, Pi}, Axes → True, AxesLabel → {"x", "y"},

Filling → Axis, ColorFunction → "Rainbow"] (*rainbow shading*)

Out[]=

-3 -2 -1 1 2 3
x

-1.0

-0.5

0.5

1.0

y

Out[]=

-3 -2 -1 1 2 3
x

-1.0

-0.5

0.5

1.0

y

MathematicaGuide.nb 13

Printed by Wolfram Mathematica Student Edition

Out[]=

Example 2. Plotting two (or more) functions on the same plot. Plot sin(x) and
cos(x) on the same plot.

When plotting more than one function on the same plot, you use the same Plot[] function, but now you
specify the two (or more) functions by putting them together in curly braces {f[x],g[x]}.
NOTE when specifying the colors, be sure to put the corresponding colors in curly braces also.

In[]:= Clear[f, g] (* we have already used f and g in these notes, so let's clear them *)

f[x_] := Sin[x]

g[x_] := Cos[x]

Plot[{f[x], g[x]}, {x, -Pi, Pi}, AxesLabel → {"x", "y"}, PlotStyle → {Red, Blue}]

Out[]=

-3 -2 -1 1 2 3
x

-1.0

-0.5

0.5

1.0

y

7b. Plotting functions (f(x, y) = k)
Here, I talk about how to plot implicit functions of the form f(x, y) = k.

Instead of using the Plot[] function, we use ContourPlot[f[x,y]==k,{x,a,b}].
I give an example of a cardioid below.

14 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

One difference between ContourPlot[] and Plot[] is that we must specify the bounds for BOTH x and y.

Example 3. Plot the ellipse x2

9 + y2

4 = 1.

In[]:= Clear[f]

f[x_, y_] := x^2  9 + y^2  4

ContourPlot[f[x, y] ⩵ 1, {x, -3.5, 3.5}, {y, -2.5, 2.5}, AspectRatio → Automatic]

(* NOTE -- the AspectRatio→

Automatic is to make the scalings of the x- and y-axes the same *)

Out[]=

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

7c. Plotting functions (z = f(x, y))
Here, I talk about how to plot explicit functions of the form z = f(x, y).

The function we use is similar to Plot[]. We use Plot3D[]. The basic instructions for Plot3D[] are
Plot3D[f[x,y],{x,a,b},{y,c,d},AxesLabel->{“x”,“y”,“z”}]

NOTE As with ContourPlot[], we must specify the bounds for both x and y.

NOTE We could also plot explicit functions like this using ContourPlot3D (see next section).

MathematicaGuide.nb 15

Printed by Wolfram Mathematica Student Edition

Example 4. Plot the paraboloid z = x2 + y2.

In[]:= Clear[f]

f[x_, y_] := x^2 + y^2

Plot3D[f[x, y], {x, -3, 3}, {y, -3, 3}, AxesLabel → {"x", "y", "z"}]

Out[]=

Example 5. Plot the plane 2 x+3 y- z = 8 and the paraboloid z = x2 + y2 on the
same plot.

Just like what we did with two function using Plot[], we do the same thing for Plot3D[]. We must specify
both functions together in curly braces.
NOTE We must first rewrite the plane as an explicit function to use Plot3D, z = 2 x + 3 y - 8.

In[]:= Clear[f, g]

f[x_, y_] := 2 * x + 3 * y - 8

g[x_, y_] := x^2 + y^2

Plot3D[{f[x, y], g[x, y]}, {x, -3, 3}, {y, -3, 3}, AxesLabel → {"x", "y", "z"}]

Out[]=

7d. Plotting functions (f(x, y, z) = k)
Here, I talk about plotting implicit functions of the form f(x, y, z) = k.

16 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

We use the function ContourPlot3D[]. The basic instructions for this function are
ContourPlot3D[f[x,y,z]==k,{x,a,b},{y,c,d},{z,e,f},AxesLabel->{“x”,”y”,”z”}]

NOTE We must specify the bounds for x, y, z.

Example 6. Plot the ellipsoid x2 +3 y2 +2 z2 = 4.

In[]:= Clear[f]

f[x_, y_, z_] := x^2 + 3 * y^2 + 2 * z^2

ContourPlot3D[f[x, y, z] ⩵ 4, {x, -2, 2},

{y, -2, 2}, {z, -1.5, 1.5}, AxesLabel → {"x", "y", "z"}]

Out[]=

MathematicaGuide.nb 17

Printed by Wolfram Mathematica Student Edition

Example 7. On the same set of axes, plot the plane x+ y+ z = 4 and the cylinder
4 = x2 + y2.

In[]:= Clear[f, g]

f[x_, y_, z_] := x + y + z

g[x_, y_, z_] := x^2 + y^2

ContourPlot3D[{f[x, y, z] ⩵ 0, g[x, y, z] ⩵ 4}, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}]

Out[]=

Example 8. Plot the paraboloid z = x2 + y2 using (a) Plot3D[] and (b)
ContourPlot3D[].

This is meant to demonstrate that you can plot any explicit function as an implicit function. For part (b),
we must rewrite the equation as z - x2 - y2 = 0.

18 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

In[]:= (* a *)

Clear[f]

f[x_, y_] := x^2 + y^2

Plot3D[f[x, y], {x, -2, 2}, {y, -2, 2}, AxesLabel → {"x", "y", "z"}]

(* b *)

Clear[f]

f[x_, y_, z_] := z - x^2 - y^2

ContourPlot3D[f[x, y, z] ⩵ 0, {x, -2, 2}, {y, -2, 2}, {z, 0, 8}, AxesLabel → {"x", "y", "z"}]

Out[]=

Out[]=

MathematicaGuide.nb 19

Printed by Wolfram Mathematica Student Edition

8a. Differentiation (y = f(x))
There are many ways to differentiate a function of the form y = f(x) in Mathematica.

If your function is of one variable, i.e., y = f(x), you have two options:
1. Literally just write f’[x] as you normally would with pen and paper.
2. Use the built-in function D[f[x],x]
NOTE If you wanted to take three derivatives, you would instead use
1. f’’’[x]
2. D[f[x],x,x,x]

Example 1. Find the velocity and acceleration of a ball whose distance is given
by s(t) = -4.9 t2 +20 t+5 feet.
Compute the velocity at time t = 3 seconds.

NOTE For the sake of demonstrating how to use BOTH methods of computing the derivative in
Mathematica, I shall use the first method for the velocity and the second method for the acceleration.

In[]:= Clear[s, v, a] (* we are going to use s,v,a *)

s[t_] := -4.9 * t^2 + 20 * t + 5

v[t_] := s'[t] (*define the velocity as the derivative of distance*)

a[t_] := D[s[t], t, t]

(*define the acceleration as the second derivative of distance*)

s[t] (*distance*)

v[t] (*velocity*)

a[t] (*acceleration*)

v[3]

Out[]= 5 + 20 t - 4.9 t2

Out[]= 20 - 9.8 t

Out[]= -9.8

Out[]= -9.4

8b. Differentiation (z = f(x, y))
Unlike a function of a single variable, we cannot simply use f’[x,y] because we wouldn’t know whether ’
stood for a partial derivative with respect to x, or a partial derivative with respect to y.

The two ways to compute partial derivatives are:

20 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

1. D[f[x,y],x,y,x,x], where you specify the order of partial derivatives.
2. Derivative[nx,ny,nz][f][x,y,z] will take a partial derivative with respect to x (nx-times), then
with respect to y (ny-times), then with respect to z (nz-times).

Example 2. Compute fxy and fyx for f(x, y) = sin(x) ey. By Clairaut’s theorem, we
expect these to be identical.

In[]:= Clear[f]

f[x_, y_] := Sin[x] * Exp[y]

D[f[x, y], x, y] (* f_xy *)

D[f[x, y], y, x] (* f_yx *)

Out[]= ⅇy Cos[x]

Out[]= ⅇy Cos[x]

Example 3. Compute fxxyyzzz for f(x, y, z) = sin(x) sin(y) sin(z). Compute this
derivative at the point (1,2,3).

In[]:= Clear[f]

f[x_, y_, z_] := Sin[x] * Sin[y] * Sin[z]

Derivative[2, 2, 3][f][x, y, z]

Derivative[2, 2, 3][f][1, 2, 3]

Out[]= -Cos[z] Sin[x] Sin[y]

Out[]= -Cos[3] Sin[1] Sin[2]

9a. Integration (y = f(x))
Integrating functions of a single variable y = f(x) is just as straightforward as derivatives for functions of
a single variable.

The Mathematica function you will use for INDEFINITE integrals is
Integrate[f[x],x].
The Mathematica function you will use for DEFINITE integrals is
Integrate[f[x],{x,a,b}] OR NIntegrate[f[x],{x,a,b}]

NOTE The difference between Integrate and NIntegrate is that NIntegrate solves the integral
numerically (e.g., trapezoid rule, Simpson’s rule, Gaussian quadratures, etc...). For the most part in
your calculus courses, you’ll just use Integrate[]. The function NIntegrate isn’t really necessary until
you get into upper-level mathematics courses.

Example 1. Compute the indefinite integral ∫x-1/2 dx. Then, compute the

MathematicaGuide.nb 21

Printed by Wolfram Mathematica Student Edition

indefinite integral ∫[0,3]x
-1/2 dx.

In[]:= Clear[f]

f[x_] := x^-1  2

Integrate[f[x], x]

Integrate[f[x], {x, 0, 3}]

Out[]= 2 x

Out[]= 2 3

9b. Integration (z = f(x, y))
Here, we talk about how to compute (definite) integrals for explicit functions of the form
z = f(x, y).

The Mathematica function you’ll want to use is the same as before, Integrate[]. However, you will need
to specify the bounds for x and for y.
Expressing and implementing the bounds/limits of integration is complicated and is different for
Cartesian coordinates vs. polar coordinates. I give examples for each coordinate system.

Example 2. (Cartesian coordinates on a rectangle) Compute the volume
under the surface (i.e., the integral of the function) z = f(x, y) = x2 + y2 + x over the
rectangular domain [0, 3] × [0, 2].

In[]:= Clear[f]

f[x_, y_] := x^2 + y^2 + x

Integrate[f[x, y], {x, 0, 3}, {y, 0, 2}]

Out[]= 35

Example 3. (Cartesian coordinates on a triangle) Compute the volume under
the surface (i.e., the integral of the function) z = f(x, y) = x2 + y2 + x over the
triangular domain bounded by 0 ≤ y ≤ 1, 0 ≤ x ≤ y.

For the sake of seeing the problem geometrically, I first plot the DOMAIN below. This is not needed for
computing the actual integral itself!!! This is just to help the reader. The region of integration is the
triangle bounded by the three (technically four) lines.

22 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

In[]:= Clear[x, y]

ContourPlot[{y ⩵ 0, y ⩵ 1, x ⩵ 0, x ⩵ y}, {x, -0.2, 1.2}, {y, -0.2, 1.2}]

Out[]=

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Now to actually compute the integral.
NOTE Although perhaps counter-intuitive, you must specify the constant bounds FIRST,
followed by the function bounds SECOND!
For this example, I mean we must specify {y,0,1} BEFORE {x,0,y}. See the calculation below.

In[]:= Clear[f]

f[x_, y_] := x^2 + y^2 + x

Integrate[f[x, y], {y, 0, 1}, {x, 0, y}]

Out[]=

1

2

Example 4. (Polar coordinates on a half circle) Compute the volume under the
surface z = f(x, y) = x2 ex

2+y2 over the semicircle of radius 2 residing in the upper
half plane.

As we know, we must convert to polar coordinates!
f(r, θ) = (r cos(θ))2 er

2. Thus, ∫∫Dx
2 ex

2+y2 dA = ∫∫D(r cos(θ))2 er
2
r drdθ.

In my opinion, there are two ways to code this in polar coordinates.
1. You know the bounds for r and θ, so you can just compute it as we did in the last two examples.
2. You can change coordinates using x = r cos(θ) and y = r sin(θ) in the integration. Just be sure to
remember the extra r from dxdy = rdrdθ.

MathematicaGuide.nb 23

Printed by Wolfram Mathematica Student Edition

I shall demonstrate both methods.

In[]:= (* Method 1 *)

Clear[f]

f[r_, θ_] := r * Cos[θ]^2 * Exp[r^2] * r

Integrate[f[r, θ], {r, 0, 2}, {θ, 0, Pi}]

Out[]=

1

4
1 + 3 ⅇ4 π

In[]:= (* Method 2 *)

Clear[f]

f[x_, y_] := x^2 * Exp[x^2 + y^2]

Integrate[f[r * Cos[θ], r * Sin[θ]] * r, {r, 0, 2}, {θ, 0, Pi}]

Out[]=

1

4
1 + 3 ⅇ4 π

9c. Integration (w = f(x, y, z))
Here, we talk about how to compute (definite) integrals for explicit functions of the form
w = f(x, y, z).

The Mathematica function you’ll want to use is the same as before, Integrate[]. However, you will need
to specify the bounds for x, y, z.
Expressing and implementing the bounds/limits of integration is complicated and is different for
Cartesian coordinates vs. cylindrical coordinates vs. spherical coordinates. I give examples for each
coordinate system.

Example 5. (Cartesian coordinates over a triangular wedge) Compute the
volume (i.e., w ≡ 1 in triple integrals) of the region in the first octant bounded by
the planes x+ y = 1, z = y-0.5 x, x = 0 and z = 0.

Again, purely for the sake of geometrically visualizing the region of integration, I shall plot the planes.

24 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

In[]:= ContourPlot3D[{x + y == 1, z ⩵ y - 0.5 x, x ⩵ 0, z ⩵ 0}, {x, -0.1, 1.1},

{y, -0.1, 1.1}, {z, -0.1, 1.1}, Axes → True, AxesLabel → {"x", "y", "z"}]

Out[]=

Now, we compute the triple integral (in Cartesian coordinates). Just like with double integrals,
we must FIRST specify the constant bounds of integration, SECOND specify the bounds depen-
dent on one variables, TIHRD specify the bounds dependent on two variables.
See the code below.
As we can see from the bounds (as well as the plot), 0 ≤ x ≤ 2 /3, 0 ≤ y ≤ 1 - x, and 0 ≤ z ≤ y - 0.5 x.

In[]:= Clear[w]

w[x_, y_, z_] := 1 (* only when we ONLY want the volume via a triple integral *)

Integratew[x, y, z], x, 0, 2  3, {y, 0, 1 - x}, {z, 0, y - 0.5 * x}

Out[]= 0.0987654

Example 6. (Cylindrical coordinates) Compute the triple integral of
w = f (x, y, z) = x2 over the volumetric region E that lies within the cylinder
x2 + y2 = 1, above the plane z = 0, and below the cone z2 = 4 x2 + y2.

Again, I shall plot the domain for a geometric visualization.
NOTE I plot both the entire domain, as well as a cross-sectional plot.

MathematicaGuide.nb 25

Printed by Wolfram Mathematica Student Edition

In[]:= ContourPlot3Dx^2 + y^2 ⩵ 1, z ⩵ 0, z^2 ⩵ 4 * x^2 + y^2,

{x, -1.1, 1.1}, {y, -1.1, 1.1}, {z, -0.1, 2.5}, AxesLabel → {"x", "y", "z"}

ContourPlot3Dx^2 + y^2 ⩵ 1, z ⩵ 0, z^2 ⩵ 4 * x^2 + y^2,

{x, -1.1, 1.1}, {y, 0, 1.1}, {z, -0.1, 2.5}, AxesLabel → {"x", "y", "z"}

Out[]=

Out[]=

Now to compute the triple integral. It can be found that 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 and 0 ≤ z ≤ 2 r. The polar
coordinate change is x = r cos(θ) and y = r sin(θ), and we keep z the same.

26 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

Be sure to not forget that dxdydz = rdzdrdθ

In[]:= Clear[f]

f[x_, y_, z_] := x^2

Integrate[f[r * Cos[θ], r * Sin[θ], z] * r, {θ, 0, 2 * Pi}, {r, 0, 1}, {z, 0, 2 * r}]

Out[]=

2 π

5

Example 7. (Spherical coordinates) Compute the triple integral of
w = f(x, y, z) = xex2+y2+z2 over the volumetric region E given as the portion of the
unit ball x2 + y2 + z2 ≤ 1 that lies in the first octant.

It can be easily verified that 0 ≤ ρ ≤ 1, 0 ≤ θ ≤π /2 and 0 ≤ϕ ≤π /2. Given that x = ρ cos(θ) sin(ϕ),
y = ρ sin(θ) sin(ϕ), z = ρ cos(ϕ) and dxdydz = ρ2 sin(ϕ)dρdθdϕ, we can compute the integral quite
easily in Mathematica.

In[]:= Clear[f]

f[x_, y_, z_] := x * Exp[x^2 + y^2 + z^2]

Integratef[ρ * Cos[θ] * Sin[ϕ], ρ * Sin[θ] * Sin[ϕ], ρ * Cos[ϕ]] * ρ^2 * Sin[ϕ],

{ρ, 0, 1}, θ, 0, Pi  2, ϕ, 0, Pi  2

Out[]=

π

8

10. Vectors and Vector Fields
Vectors are made in Mathematica using curly braces {a,b,c}. Note that points and vectors are both
denoted with {a,b,c}.

In this section, the functions that you will need are shown through the many examples.

Example 1. (Vector addition, scalar multiplication, and norms) Given the
vectors a = 〈1, 3, -2〉 and b = 〈0, 2, 4〉, compute the vector 4 a- b

. Compute the
norm of 4 a- b

.

Vector addition and scalar multiplication are pretty intuitive in Mathematica.

NOTE Notice that below, we don’t need to use := when defining the vectors because they are NOT
functions of some other variables. Only when the vectors are dependent on some variable (such as
time t) do we need to define them as functions.

As for the norm, we can use Mathematica’s built-in function Norm[].

MathematicaGuide.nb 27

Printed by Wolfram Mathematica Student Edition

In[]:= a = {1, 3, -2}; (* vector a *)

b = {0, 2, 4}; (* vector b *)

4 * a - b

Norm[4 * a - b] (* norm *)

Out[]= {4, 10, -12}

Out[]= 2 65

Example 2. (Dot and cross products) Given the vectors a = 〈1, 3, -2〉 and
b

= 〈0, 2, 4〉, compute the dot product a · b

 and the cross product a× b
.

The dot product between vectors a and b can be done with the built-in function Dot[a,b].
The cross product between vectors a and b can be done with the built-in function Cross[a,b].

In[]:= Clear[a, b]

a = {1, 3, -2};

b = {0, 2, 4};

Dot[a, b]

Cross[a, b]

Out[]= -2

Out[]= {16, -4, 2}

Example 3. (Gradients, Directional Derivatives, Divergence, Curl) Given the
function f(x, y, z) = x3 cos(y) sin(z) and the vector field
F

(x, y, z) = x2, y cos(z), y+ z, do the following:

(a) Compute the gradient of f, ∇f.
(b) Compute the directional derivative Du f = ∇f · u in the direction v = 〈1, 1, 1〉.
(c) Compute the divergence of F, ∇ · F

.
(d) Compute the curl of F, ∇ × F

.

(a) As we know, the gradient is defined by ∇f = 〈fx, fy, fz〉. The built-in Mathematica function for
the gradient is Grad[f[x,y,z],{x,y,z}].
It is important that you have the {x,y,z} in Grad[] because this tells you to compute the gradient in
Cartesian coordinates!!! In other words, you want to take partial derivatives with respect to
x, y, z.

(b) Now, simply use what we’ve learned so far about dot products and gradients in Mathematica.

(c) Similar to Grad[], the divergence of a vector field F can be computed using the built-in func-
tion Div[F[x,y,z],{x,y,z}], where again {x,y,z} tells Mathematica that we want to compute the
divergence in Cartesian coordinates!!!

28 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

(d) Similar to Grad[] and Div[], the curl of a vector field F can be computed using the built-in
function Curl[F[x,y,z],{x,y,z}], where again {x,y,z} tells Mathematica that we want to compute the
divergence in Cartesian coordinates!!!

In[]:= Clear[f, F, u, v]

(* a *)

f[x_, y_, z_] := x^3 * Cos[y] * Sin[z]

Grad[f[x, y, z], {x, y, z}]

(* b *)

v = {1, 1, 1};

u = v / Norm[v]; (* need to make unit vector *)

Duf = Dot[Grad[f[x, y, z], {x, y, z}], u]

(* b *)

F[x_, y_, z_] := {x^2, y * Cos[z], y + z}

Div[F[x, y, z], {x, y, z}]

(* d *)

Curl[F[x, y, z], {x, y, z}]

Out[]= 3 x2 Cos[y] Sin[z], -x3 Sin[y] Sin[z], x3 Cos[y] Cos[z]

Out[]=

x3 Cos[y] Cos[z]

3
+ 3 x2 Cos[y] Sin[z] -

x3 Sin[y] Sin[z]

3

Out[]= 1 + 2 x + Cos[z]

Out[]= {1 + y Sin[z], 0, 0}

Example 4. (Plotting 2D Vectors)

Q -- What information do we need to plot a vector (in 2D)?
A -- We need a starting point and an ending point, or equivalently we need a point and a vector.

The command in Mathematica to plot a vector is
Graphics[{Color,Thickness[Large],Arrow[{startingpoint,endingpoint}]} , Axes->True , AxesLa-
bel->{“x”,“y”} , AxesOrigin->{0,0} , PlotRange→{{a,b},{c,d}}]

There are four main components to this Mathematica function that can be broken down as such:
1. {Color,Thickness[Large],Arrow[{startingpoint,endingpoint}]}
You need to choose a color, the thickness of the arrows (choose from Small, Medium, Large), and the
starting and ending points of the vector (e.g., {0,0} and {1,2}).
2. Axes->True
Do you want axes to show on your plot? Choose True or False.
3. AxesLabel->{“x”,”y”}

MathematicaGuide.nb 29

Printed by Wolfram Mathematica Student Edition

This shouldn’t be new to you.
4. AxesOrigin->{0,0}
This just defines where you want to “origin” to be on the axes.
5. PlotRange→{{a,b},{c,d}}
Specify the bounds for x and y.

NOTE We can also plot more than one vector on the same plot using the exact same methodol-
ogy as we do when plotting.

NOTE We can do the same thing for vectors in 3D. Simply define starting and ending points in
three coordinates (e.g., {0,0,0}) and define the PlotRange for the ranges of x, y, z.

start = {1, 0.5};

end = {3, 1};

Graphics[{Blue, Thickness[Large], Arrow[{start, end}]}, Axes → True,

AxesLabel → {"x", "y"}, AxesOrigin → {0, 0}, PlotRange → {{0, 3.5}, {0, 1.5}}]

Out[]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
x0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y

In[]:= start1 = {0, 0};

end1 = {3, 2};

start2 = {-1, 1};

end2 = {3, 0};

Graphics[{{Blue, Thickness[Large], Arrow[{start1, end1}]},

{Red, Thickness[Large], Arrow[{start2, end2}]}}, Axes → True,

AxesLabel → {"x", "y"}, AxesOrigin → {0, 0}, PlotRange → {{-1.5, 3.5}, {-0.5, 2.5}}]

Out[]=

-1 1 2 3
x

-0.5

0.5

1.0

1.5

2.0

2.5
y

30 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

NOTE Although completely optional, you could also define/create a function that does all of this
in a much cleaner fashion. Two functions that we could make are

Vector[{start:{_,_},end:{_,_}} ,color_ _] :=Graphics[{color,Thickness[Large],Arrow[-
{start,end}]}]

Vector[{ip:{_,_},vec:{_,_}} ,color_ _] :=Graphics[{color,Thickness[Large],Arrow[{ip,ip+vec}]}]

The way we first defined Vector[], you give it a starting point and an ending point.
The way we second defined Vector[], you give it a starting point and a vector for the direction.

Example 5. (Plotting Vector Fields in 2D)

Given a vector field F(x, y), you plot it using the built-in function
VectorPlot[F[x,y],{x,a,b},{y,c,d},Axes->True,AxesLabel->{“x”,“y”},VectorMarkers->“Arrow”,PlotL-
egends->Automatic]

In the example below, I plot the vector field F(x, y) = 〈-y, x〉.
NOTE I named my vector field fvec[x_,y_] because we shouldn’t use capital letters when defining
variables and functions.

In[]:= Clear[fvec]

fvec[x_, y_] := {-y, x}

VectorPlot[fvec[x, y], {x, -Pi, Pi}, {y, -Pi, Pi}, Axes → True,

AxesLabel → {"x", "y"}, VectorMarkers → "Arrow", PlotLegends → Automatic]

Out[]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

1

2

3

4

MathematicaGuide.nb 31

Printed by Wolfram Mathematica Student Edition

Example 6. (Plotting Vector Fields in 3D)

This is near identical to plotting vector fields in 2D.
Given a vector field F(x, y, z), you plot it using the built-in function
VectorPlot3D[F[x,y,z],{x,a,b},{y,c,d},{z,e,f},Axes->True,AxesLabel->{“x”,“y”,“z”},VectorMarkers-
>“Arrow”,PlotLegends->Automatic]

In the example below, I plot the vector field
F

(x, y, z) = (1 - x)((x - 1)2 + (y - 2)2 + (z - 3)2)1.5,

(2 - y)((x - 1)2 + (y - 2)2 + (z - 3)2)1.5, (3 - z)((x - 1)2 + (y - 2)2 + (z - 3)2)1.5

NOTE I named my vector field fvec[x_,y_,z_] because we shouldn’t use capital letters when
defining variables and functions.

In[]:= Clear[fvec]

fvec[x_, y_, z_] := 1 - x  x - 1^2 + y - 2^2 + z - 3^2^1.5,

2 - y  x - 1^2 + y - 2^2 + z - 3^2^1.5,

3 - z  x - 1^2 + y - 2^2 + z - 3^2^1.5

VectorPlot3D[fvec[x, y, z], {x, 0, 1}, {y, 0, 2}, {z, 0, 3}, Axes → True,

AxesLabel → {"x", "y", "z"}, VectorMarkers → "Arrow", PlotLegends → Automatic]

Out[]=

0

0.25

0.50

0.75

1.00

1.25

11. Parameterizations, Line Integrals, Surface
Integrals

32 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

If you refer to the sections in these notes on functions, integration, and vectors, you should be able to
naturally extend those ideas to parameterizations, line integrals, and surface integrals since they utilize
all the previous topics.

Just like the section on vectors, I shall demonstrate these topics through many examples.

Example 1. (Parameterizing x, y) Given the parameterization
x(t) = 2 cos(t) (1- cos(t)) and y(t) = 2 sin(t) (1- cos(t)), plot the cardioid for
0 ≤ t ≤ 2π .

For the parameterization, x and y are functions of t.
First, we need to define the parameterization x[t_]:=2cos(t)(1-cos(t)) and y[t_]:=2sin(t)(1-cos(t)).
Second, we plot using
ParametricPlot[{x[t],y[t]},{t,a,b},Axes->True,AxesLabel->{“x”,“y”}]
Notice that this is very similar to the Plot[] function. The main difference is that we need to input the
position vector function 〈x(t), y(t)〉.

NOTE Another way to do this is to define the position vector r(t) = 〈x(t), y(t)〉 and use
ParametricPlot[r[t],{t,a,b},Axes->True,AxesLabel->{“x”,“y”}]

MathematicaGuide.nb 33

Printed by Wolfram Mathematica Student Edition

In[]:= Clear[x, y]

x[t_] := 2 * Cos[t] * 1 - Cos[t]

y[t_] := 2 * Sin[t] * 1 - Cos[t]

ParametricPlot[{x[t], y[t]}, {t, 0, 2 * Pi}, Axes → True, AxesLabel → {"x", "y"}]

Out[]=

-4 -3 -2 -1
x

-2

-1

1

2

y

Example 2. (Parameterizing x, y, z) Consider the parametric curve
r(t) = 〈sin(t), 1- sin(16 t), cos(t)〉, 0 ≤ t ≤ 2π . Plot this curve.

Similar to using ParametricPlot[], we now use the function
ParametricPlot3D[{x[t],y[t],z[t]},{t,a,b},Axes->True,AxesLabel->{“x”,“y”,“z”}]
or
ParametricPlot3D[r[t],{t,a,b},Axes->True,AxesLabel->{“x”,“y”,“z”}]

I shall use the latter in this example.

34 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

In[]:= Clear[r]

r[t_] := {Sin[t], 1 - Sin[16 * t], Cos[t]}

ParametricPlot3D[r[t], {t, 0, 2 * Pi}, Axes → True, AxesLabel → {"x", "y", "z"}]

Out[]=

MathematicaGuide.nb 35

Printed by Wolfram Mathematica Student Edition

Example 3. (Arc length in x, y) The curve C is given by the parameterization
x(t) = cos(t), y(t) = 2 sin(t), 0 ≤ t ≤ π /2. Plot the function and then compute its arc
length, given that the arc length formula for a parameterization is

∫t=a
t=b || r' (t) ||dt = ∫t=a

t=b dx
dt 

2
+  dy

dt 
2
dt.

NOTE In your calculus course you might’ve seen the arc length formula
(WITHOUT parameterization) given by ∫x=a

x=b1+  dy
dx 

2
dx. This is the exact same

thing. In our case, if you’re looking at a function y = f(x), we simply define the
parameterization as 〈x(t), y(t)〉 = t, f(t).

In[]:= Clear[r]

r[t_] := {Cos[t], 2 * Sin[t]}

ParametricPlotr[t], t, 0, Pi  2, Axes → True, AxesLabel → {"x", "y"}

IntegrateNorm[r'[t]], t, 0, Pi  2

(* Since the answer to the integration is kind of gross,

we replace 0 with a decimal 0.0. If you give Mathematica a decimal,

it will usually give you a decimal in return *)

IntegrateNorm[r'[t]], t, 0.0, Pi  2

Out[]=

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

2.0

y

Out[]= 2 EllipticE
3

4


36 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

Out[]= 2.42211

Example 4. (Arc length in x, y, z) Using the arc length formula given in the last
example, compute the arc length for the curve C given by the parameterization
r(t) = 〈2cos(t),0.2t,2sin(t)〉, 0 ≤ t ≤ 2π .

In[]:= Clear[r]

r[t_] := {2 * Cos[t], 0.2 * t, 2 * Sin[t]}

Integrate[Norm[r'[t]], {t, 0, 2 * Pi}]

Out[]= 12.629

Example 5. (Line integrals for scalar fields and vector fields)
(a) Compute the line integral ∫Cxeyz ds, where C is the line segment from (0,0,0)
to (1,2,3).
NOTE the parameterization is r(t) = 〈t, 2 t, 3 t〉 with 0 ≤ t ≤ 1.
(b) Compute the line integral ∫CF


·d r, where F(x, y) = ex-1 i+ x y j and C is given

by r(t) = t2 i+ t3 j for 0 ≤ t ≤ 1.

Recall that the equations for the line integrals of scalar and vector fields are respectively given
by
∫Cf(x, y, z)ds = ∫[a,b]

f r(t) || r ' (t) || dt

and ∫C F

·d r = ∫[a,b]

F

(r) · r ' (t)dt.

In[]:= (* a *)

Clear[f]

f[x_, y_, z_] := x * Exp[y * z]

x[t_] := t

y[t_] := 2 * t

z[t_] := 3 * t

r[t_] := {x[t], y[t], z[t]}

Integrate[f[x[t], y[t], z[t]] * Norm[r'[t]], {t, 0, 1}]

Out[]=

1

6

7

2
-1 + ⅇ6

In[]:= (* b *)

Clear[fvec]

fvec[x_, y_] := {Exp[x - 1], x * y}

x[t_] := t^2

y[t_] := t^3

r[t_] := {x[t], y[t]}

Integrate[Dot[fvec[x[t], y[t]], r'[t]], {t, 0, 1}]

Out[]=

11

8
-
1

ⅇ

Example 6. (Surface Integrals for scalar fields and vector fields)

MathematicaGuide.nb 37

Printed by Wolfram Mathematica Student Edition

(a) Compute the surface integral ∫∫S(x+ y+ z)dS, where S is the parallelogram
with parametric equations x = u+ v, y = u- v, and z = 1+2 u+ v, where 0 ≤ u ≤ 2
and 0 ≤ v ≤ 1.
(b) Compute the surface integral ∫∫SF


·d S
, where S is the cylinder x2 + z2 = 4

with 0 ≤ y ≤ 1. Let F(x, y, z) = 〈-x /2, 0, -z /2〉.
NOTE A natural parameterization is x = 2 cos(u), z = 2 sin(u), y = v, with
0 ≤ u ≤ 2π and 0 ≤ v ≤ 1.

Recall that the equations for the surface integrals of scalar and vector fields are respectively given
by
∫∫Sf(x, y, z)dS = ∫∫Df r

(u, v) || ru× rv || dA

and ∫∫S F

·d S


= ∫∫D F

 r(u, v) · ru× rvdA.

In[]:= (* a *)

Clear[f, x, y, z, r]

f[x_, y_, z_] := x + y + z

x[u_, v_] := u + v

y[u_, v_] := u - v

z[u_, v_] := 1 + 2 * u + v

r[u_, v_] := {x[u, v], y[u, v], z[u, v]}

Integrate[f[x[u, v], y[u, v], z[u, v]] * Norm[Cross[D[r[u, v], u], D[r[u, v], v]]],

{u, 0, 2}, {v, 0, 1}]

Out[]= 11 14

In[]:= (* b *)

Clear[fvec, x, y, z, r]

fvec[x_, y_, z_] := -x  2, 0, -z  2

x[u_, v_] := 2 * Cos[u]

y[u_, v_] := v

z[u_, v_] := 2 * Sin[u]

r[u_, v_] := {x[u, v], y[u, v], z[u, v]}

Integrate[Dot[fvec[x[u, v], y[u, v], z[u, v]], Cross[D[r[u, v], u], D[r[u, v], v]]],

{u, 0, 2 * Pi}, {v, 0, 1}]

Out[]= 4 π

12. Sum[] with applications to Riemann sums
and convergent series

Recall the use of sigma (Σ) notation. For instance, ∑i=1
n fi = f1 + f2 + ... + fn. In Mathematica, we can use

the function Sum[f[i],{i,a,b}].
In the function Sum[], we must specify the (indexed) values we are summing up, as well as the range for
the indices.

38 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

Example 1. Sum up the values i2 for i = 1, 2, ..., 20.

In[]:= Sum[i^2, {i, 1, 20}]

Out[]= 2870

Example 2. (Riemann sums) Compute the Riemann sum using n = 50 midpoint
rectangles to approximate the integral ∫1

3sin(x)dx. Compare with the exact
answer.

As we know from Riemann sums, ∫a
b
f(x)dx ≈ b-a

n
∑i=1
n f(xi), where xi is any point in the ith subinterval. We

shall use the midpoint of each subinterval. Note that in this case, if Δx = b-a
n

, then xi = a + (i - 0.5)Δx.

In[]:= Clear[f]

f[x_] := Sin[x]

dx = 3 - 1  50;

dx * Sumf1 + i - 0.5 * dx, {i, 1, 50}

Integrate[f[x], {x, 1.0, 3.0}]

Out[]= 1.5304

Out[]= 1.53029

Example 3. (Convergent series) As we know, the series ∑k=0
∞ a rk converges if

and only if r < 1. Moreover, if this series converges, then it converges to a
1-r .

Verify this for a = 1 and r = 0.8.

In[]:= Sum[1 * 0.8^k, {k, 0, Infinity}]

1  1 - 0.8

Out[]= 5.

Out[]= 5.

Example 4. (Taylor Series) Compute the truncated Taylor series for f(x) = sin(x)
at the point where x = 1, up through the first 8 terms (i.e., up to and including
the x7 term). Compare with the exact answer.

We can compute Taylor series two different ways in Mathematica.
1. We can do it the hard way, building it by hand.
2. We can use Mathematica’s built-in function Series[f[x],{x,a,n}], where a is the value at which we
want to center the series solution and n is the polynomial order we want up to (e.g., n = 7 means we
want up to and including the x7 term).

We shall use both ways here centering about a = 0. Recall that the Taylor series representation is
f ()()

MathematicaGuide.nb 39

Printed by Wolfram Mathematica Student Edition

f(x) =∑n=0
∞ f (n)(a)

n!
(x - a)n

In[]:= Clear[f]

f[x_] := Sin[x]

(* Method 1 *)

SumDerivative[n][f][0] * 1.0 - 0^n  (n!), {n, 0, 7}

(* Method 2 *)

Series[f[x], {x, 0, 7}]

Limit[Series[f[x], {x, 0, 7}], {x → 1.0}]

(* Exact solution *)

Sin[1.0]

Out[]= 0.841468

Out[]= x -
x3

6
+

x5

120
-

x7

5040
+ O[x]8

Out[]= 0.841468

Out[]= 0.841471

13. Lists and Loops
Most students come into calculus without any prior experience coding in any language. As such, the
idea of “loops” is a foreign concept. We shall take a moment to go over what loops are. There are really
two different types of loops that we care about: “for loops” and “while loops.”

“For loops” can be thought of as follows -- “For certain values, I want to perform some action.”
“While loops” can be thought of as follows -- “Until a certain goal is met, I will continue to update a
certain action.”

Some examples of “for loops” are:
1. For n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, I want to compute n2.
2. Consider a set/list of functions, {sin(x), sin(2x), sin(3x), sin(4x), ...}. For each function f(x) in this set, I
want to compute f ' (1).
3. Newton’s method is a simple way to find the root of a function f(x), i.e., solving f(x) = 0. If we pick a
reasonable starting value x0, then we will possibly converge to a root of f(x) using the recursive relation-
ship xn+1 = xn -

f (xn)
f ' (xn)

 for n = 1, 2, 3, ...

An example of a “while loop” is:
We know that as you take more and more terms in a (convergent) series, we will get closer and closer to
the exact value. So, let’s keep adding more and more terms (one at a time) until the series approxima-
tion is 5% of the exact solution.

40 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

A “list” can be thought of as a set of objects (these objects could be anything! functions, numbers,
species of animals, etc...)
In Mathematica, we define a list using curly braces, such as typing list = {1,2,3,6,7,8}.
You can add/append an object to the list by using the command list = Append[list,newobject].
To access the nth object in a list, you must use double brackets, e.g., list[[4]] will give you the
fourth item.

Example 1. (Appending lists without using loops) Consider a list containing
the objects (i.e., numbers) 1,2,3,6,7,8. Append the values 10,11,12,13. After
doing this, what is the fourth object/number in the list?

In[]:= Clear[list]

list = {1, 2, 3, 6, 7, 8};

list = Append[list, 10];

list = Append[list, 11];

list = Append[list, 12];

list = Append[list, 13]

list[[4]]

Out[]= {1, 2, 3, 6, 7, 8, 10, 11, 12, 13}

Out[]= 6

In Mathematica, we code “for loops” using a format similar to the following example:
For[i=1,i<4,i++,Print[i]]
Let’s break down what this is saying.
“For i starting at 1; print the value of i; updated i to i + 1 (***NOTE*** that is what i++ means); and
continue only for i < 4.”

!!!WARNING!!! It is VERY IMPORTANT that you include the (i++) in your for loop!!! This is telling
Mathematica to “updated” your index/value. If were to not include (i++) in your for loops, then i
would never be updated and Mathematica would run your loop literally forever. Your computer
would crash and you would be forced to restart your computer...no fun.

Example 2. (Appending lists using loops) Repeat example 1, but use a for loop.

In[]:= Clear[list1, list2]

list1 = {1, 2, 3, 6, 7, 8};

list2 = {10, 11, 12, 13};

(* NOTE -- the number of items in list2 is 4, so let i≤4 in the for loop *)

For[i = 1, i ≤ 4, i++, list1 = Append[list1, list2[[i]]]]

list1

list1[[4]]

Out[]= {1, 2, 3, 6, 7, 8, 10, 11, 12, 13}

Out[]= 6

MathematicaGuide.nb 41

Printed by Wolfram Mathematica Student Edition

Example 3. (Appending lists using loops -- Newton’s method) Use Newton’s
method to approximately solve x2 -4 x+1 = 0 using n = 10 iterations and
starting at the value x0 = -1. Compare with the exact answer.

Before getting going, let’s make a plan of action. We will need to do 10 iterations. We shall make a list of
“updated solutions” from each iteration. After each iteration, we want to add the new solution to the
list. Notice that by Newton’s method, newx = oldx - f(oldx)/f’(oldx).

In[]:= Clear[f, xlist]

f[x_] := x^2 - 4 * x + 1

xlist = {-1.0}; (* approximate solution starting at -1 *)

Forn = 1, n ≤ 10, n++, xlist = Appendxlist, xlist[[n]] - f[xlist[[n]]]  f'[xlist[[n]]]

(* Approximate solution *)

xlist[[11]]

(* Exact solution *)

Solve[f[x] ⩵ 0.0, {x}]

Out[]= 0.267949

Out[]= {{x → 0.267949}, {x → 3.73205}}

In Mathematica, we code “while loops” are formatted similar to this example:
n=1; While[n<4, Print[n]; n++]
If we are to pick this apart, it reads “start with n=1. While n is less than 4; print n; and then update n =
n+1.”

!!!WARNING!!! Again, it is VERY IMPORTANT that you have the (n++) so that Mathematica doesn’t
continue in an endless loop forever!!!

Example 4. (Using a while loop for convergence of a series) Compute the
exact value of sin(1). How many terms are needed in the Taylor series
approximation of sin(x) centered about a = 0 to approximate the exact value
within a tolerance of 0.0001?

Let’s map out a plan of action. Start with a list that will hold our updated values. We want to know --
start with n=0 (i.e., the first term in the Taylor series). While |approx - exact|>=0.0001; update the list
and then updated n = n+1.

As can be seen in the results below, there are only 7 items in the list approxvals. This means that the
n=8 get an error within our desired tolerance! Note that the 8th item did not get appended to the list
approxvals because the while loop had already ended.

42 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

In[]:= Clear[f, approxvals]

f[x_] = Sin[x];

exact = Sin[1.0];

approxvals = {};

n = 0; While[Abs[Limit[Series[f[x], {x, 0, n}], {x → 1.0}] - exact] >= 0.0001,

approxvals = Append[approxvals, Limit[Series[f[x], {x, 0, n}], {x → 1.0}]];

n++]

Abs[approxvals - exact]

Out[]= {0.841471, 0.158529, 0.158529, 0.00813765, 0.00813765, 0.000195682, 0.000195682}

14. Tables
As we’ve seen when dealing with lists, it is oftentimes visually convenient to display them in a nice
table. This is the entire point of this section. Two examples of the command to turn a list into a table
(with two columns) in Mathematica are:
Table[{col1,col2},{n}]//TableForm to make n copies of {col1,col2}
Table[{col1,col2},{j,jmin,jmax}]//TableForm to output {col1,col2} starting from j=jmin to j=jmax; here
{col1,col2} are dependent on the index j.

Note that the first command is if you have two lists of the same that are not dependent on an index.
The second command is if each list is dependent on an index.

Example 1. (Table of two lists)

In[]:= col1 = {1, 2, 3, 4, 5, 6};

col2 = {4, 8, 3, 1, 7, 9};

Table[{col1, col2}, {1}] // TableForm

Out[]//TableForm=

1
2
3
4
5
6

4
8
3
1
7
9

Example 2. (Table of two lists dependent on index) Repeat example 3 and 4
from the Loops Section and put the results into tables.

(* Example 3 *)

MathematicaGuide.nb 43

Printed by Wolfram Mathematica Student Edition

In[]:= Clear[f, xlist]

f[x_] := x^2 - 4 * x + 1

xlist = {-1.0}; (* approximate solution starting at -1 *)

Forn = 1, n ≤ 10, n++, xlist = Appendxlist, xlist[[n]] - f[xlist[[n]]]  f'[xlist[[n]]]

Table[{n, xlist[[n]]}, {n, 1, 10}] // TableForm

Out[]//TableForm=

1 -1.
2 0.
3 0.25
4 0.267857
5 0.267949
6 0.267949
7 0.267949
8 0.267949
9 0.267949
10 0.267949

In[]:= (* Example 4 *)

Clear[f, approxvals]

f[x_] = Sin[x];

exact = Sin[1.0];

approxvals = {};

n = 0; While[Abs[Limit[Series[f[x], {x, 0, n}], {x → 1.0}] - exact] >= 0.0001,

approxvals = Append[approxvals, Limit[Series[f[x], {x, 0, n}], {x → 1.0}]];

n++]

numberitems = approxvals // Length; (* number of items in the list approxvals *)

Table[{n, approxvals[[n]]}, {n, 0, numberitems}] // TableForm

Out[]//TableForm=

0 List
1 0
2 1.
3 1.
4 0.833333
5 0.833333
6 0.841667
7 0.841667

15. Manipulate[]
A convenient function that’s built into Mathematica is the Manipulate[] function. It allows you to
change any parameter and see how the result differs. This can be applied to equations, integrals, plots,
etc...
The general format of this function is
Manipulate[whatever you want,{parameter1,a,b},{parameter2,c,d},...]
In other words, you tack on the end whatever range you want to test for each parameter.
I think this is better shown through examples, so please read below.

An easy way to think about Manipulate[] is to simply type out the Mathematica code as you normally

44 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

would. Then, put that ALL inside Manipulate[] and just tack on the range of each parameter you are
varying.

Example 1. Plotting the function sin(nx) for n ranging from 1 to 10.

In[]:= Manipulate[Plot[Sin[n * x], {x, 0, 2 * Pi},

Axes → True, AxesLabel → {"x", "y"}, PlotStyle → Blue], {n, 1, 10}]

Out[]=

1 2 3 4 5 6
x

-1.0

-0.5

0.5

1.0

y n

Example 2. Evaluating the integral of f(x) = 1
xα

 from 0 to 1 where we change the
parameter α from 0 to 0.99.

In[]:= ManipulateIntegrate1  x^α, {x, 0, 1}, {α, 0, 0.99}

Out[]=
1.72414

α

MathematicaGuide.nb 45

Printed by Wolfram Mathematica Student Edition

Example 3. Plotting the vector field
F

(x, y, t) = πcos2 x2  sin(y) cos πt

3 , πcos2 y2  sin(x) cos πt
3  for 0 ≤ t ≤ 3 on the

domain -π ≤ x, y ≤ π .

In[185]:= Clear[fvec]

fvec[x_, y_, t_] :=

-Pi * Cosx  2^2 * Sin[y] * CosPi * t  3, Pi * Cosy  2^2 * Sin[x] * CosPi * t  3

Manipulate[VectorPlot[fvec[x, y, t], {x, -Pi, Pi}, {y, -Pi, Pi}, Axes → True,

AxesLabel → {"x", "y"}, VectorScaling → Automatic, PlotLegends → Automatic], {t, 0, 3}]

Out[187]=

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

y

0

0.05

0.10

0.15

0.20

0.25

t

46 MathematicaGuide.nb

Printed by Wolfram Mathematica Student Edition

