
SPEEDING UP HIGH-ORDER ALGORITHMS IN COMPUTATIONAL

FLUID AND KINETIC DYNAMICS: BASED ON CHARACTERISTICS

TRACING AND LOW-RANK STRUCTURES

by

Joseph Nakao

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Applied
Mathematics.

Summer 2023

© 2023 Joseph Nakao
All Rights Reserved

SPEEDING UP HIGH-ORDER ALGORITHMS IN COMPUTATIONAL

FLUID AND KINETIC DYNAMICS: BASED ON CHARACTERISTICS

TRACING AND LOW-RANK STRUCTURES

by

Joseph Nakao

Approved:
Mark Gockenbach, Ph.D.
Chair of the Department of Mathematical Sciences

Approved:
John A. Pelesko, Ph.D.
Dean of the College of Arts and Sciences

Approved:
Louis F. Rossi, Ph.D.
Vice Provost for Graduate and Professional Education and
Dean of the Graduate College

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Jingmei Qiu, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Tobin Driscoll, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Peter Monk, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Michael Shay, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
William Taitano, Ph.D.
Member of dissertation committee

4

ACKNOWLEDGEMENTS

I want to express my sincere gratitude to the many individuals that have sup-

ported me these past five years. They have made this such an incredible journey.

First and foremost, I want to thank my advisor, Dr. Jingmei Qiu, for her

unparalleled patience, encouragement and mentorship. Through her example she has

shown me what it means to be an accomplished scholar, a superb educator and a caring

person. Working with her has been an utmost privilege, and this dissertation was only

possible because of her enduring support.

Additional thanks goes out to my other committee members, Dr. Tobin Driscoll,

Dr. Peter Monk, Dr. Michael Shay and Dr. William Taitano, for taking the time to

read my dissertation and provide their invaluable feedback.

I also want to thank my collaborators for their fruitful discussions, gracious

support and lasting connections. In particular, I thank my committee member, Dr.

William Taitano (Los Alamos National Laboratory), Dr. Alexander Alekseenko (Cal-

ifornia State University at Northridge), Dr. Robert Martin (Army Research Labo-

ratory) and Dr. Jiajie Chen (University of Pennsylvania). Furthermore, I want to

express my gratitude to the Spectra board of directors, especially Dr. Ron Buckmire

(Occidental College), for giving me the opportunity to support the LGBTQ+ math-

ematics community. I also wish to thank the faculty and staff of the Department of

Mathematical Sciences for providing a wonderful educational experience, including the

late Francisco-Javier Sayas, Deborah See and Pamela Irwin.

Last but certainly not least, a very special thanks goes out to my family and

friends. In particular, thank you to my parents, Mary Lou Nakao and Jerry Nakao,

for their endless love and support. They have supported me since the very beginning,

and words cannot express how lucky I am to have them as my parents.

iv

TABLE OF CONTENTS

LIST OF TABLES . x
LIST OF FIGURES . xiii
ABSTRACT . xvii

Chapter

1 INTRODUCTION . 1

1.1 Kinetic models vs fluid models . 1

1.1.1 Starting with a kinetic model 2
1.1.2 Deriving a fluid model from a kinetic model 2
1.1.3 The moment closure problem 4

1.2 Eulerian, Lagrangian and Eulerian-Lagrangian frameworks 6

1.2.1 Eulerian framework . 6
1.2.2 Lagrangian framework . 8
1.2.3 Eulerian-Lagrangian framework 9

1.3 The proposed schemes . 10

1.3.1 An Eulerian-Lagrangian scheme for convection-diffusion
equations . 10

1.3.2 A low-rank Eulerian scheme for diffusion equations 12
1.3.3 A low-rank Eulerian scheme for the Vlasov-Fokker-Planck

equation . 15

1.4 Organization of the dissertation . 17

v

2 AN EULERIAN-LAGRANGIAN RUNGE-KUTTA FINITE
VOLUME (EL-RK-FV) METHOD FOR SOLVING
CONVECTION AND CONVECTION-DIFFUSION EQUATIONS 19

2.1 Review of technical components . 20

2.1.1 Spatial reconstructions: WENO and WENO-AO 20

2.1.1.1 WENO5 . 21
2.1.1.2 WENO-AO(5,3) . 24

2.1.2 Time discretizations: Runge-Kutta methods 29

2.1.2.1 Strong stability-preserving Runge-Kutta methods . . 31
2.1.2.2 Implicit-explicit Runge-Kutta methods 33

2.1.3 Operator splitting . 36

2.1.3.1 First-order Lie-Trotter splitting 37
2.1.3.2 Second-order Strang splitting 37
2.1.3.3 Higher-order splitting 38

2.1.4 Gauss-Legendre quadrature 39

2.2 The EL-RK-FV method for pure convection problems 41

2.2.1 Scheme formulation . 41
2.2.2 Solution remapping onto a traceback grid 43
2.2.3 Reconstruction of point values 46
2.2.4 Time evolution with explicit Runge-Kutta methods 48
2.2.5 Two-dimensional problems . 50

2.2.5.1 Going from/to cell averages to/from interval averages 52
2.2.5.2 A demonstration with Strang splitting 53

2.3 The EL-RK-FV method for convection-diffusion equations 55

2.3.1 Computing the uniform cell averages of uxx 56
2.3.2 Time evolution with implicit-explicit Runge-Kutta methods . 56

vi

2.3.3 Mass conservation . 61

2.4 Numerical tests . 62

2.4.1 Pure convection problems: one-dimensional tests 63
2.4.2 Pure convection problems: two-dimensional tests 65
2.4.3 Convection-diffusion equations: one-dimensional tests 70
2.4.4 Convection-diffusion equations: two-dimensional tests 75

2.5 Conclusions and follow-up work . 81

3 IMPLICIT LOW-RANK INTEGRATORS FOR SOLVING
DIFFUSION EQUATIONS . 85

3.1 Review of technical components . 86

3.1.1 Tensor decompositions . 86

3.1.1.1 Singular value decomposition (SVD) 87
3.1.1.2 QR factorization . 91
3.1.1.3 CP decomposition 93

3.1.2 Low-rank tensor approaches for time-dependent PDEs 96

3.1.2.1 Step-and-truncate methods 96
3.1.2.2 Dynamical low-rank (DLR) methods 99

3.1.3 von Neumann stability analysis 101

3.1.3.1 Backward Euler (bE) 102
3.1.3.2 Crank-Nicolson (CN) 104
3.1.3.3 Backward differentiation formula (BDF2) 105
3.1.3.4 Diagonally implicit Runge-Kutta (DIRK2) 106

3.2 The implicit low-rank scheme . 110

3.2.1 A first-order scheme using backward Euler 112
3.2.2 A second-order scheme using DIRK2 117
3.2.3 Computational complexity . 122

3.2.3.1 Computational complexity of solving the Sylvester
equation . 122

vii

3.2.3.2 Computational complexity of the proposed scheme . 124

3.3 Numerical tests . 125

3.3.1 CPU runtime . 127
3.3.2 Convergence analysis . 133
3.3.3 Rank evolution . 139

3.4 Conclusions and follow-up work . 142

4 A LOW-RANK TENSOR SCHEME WITH
STRUCTURE-PRESERVING QUALITIES FOR SOLVING THE
1D2V VLASOV-FOKKER-PLANCK EQUATION 144

4.1 Review of technical components . 145

4.1.1 A structure-preserving Chang-Cooper (SPCC) discretization in
Cartesian coordinates . 146

4.1.2 A matrix exponential-based solver for large linear systems of
tensor-product structure . 150

4.2 Discretizing the 1D2V Vlasov-Leonard-Bernstein-Fokker-Planck
equation . 153

4.2.1 The macroscopic system and kinetic fluxes 155
4.2.2 Scheme formulation: discretizing in physical space-time 157
4.2.3 Scheme formulation: discretizing in velocity space 158

4.2.3.1 Computing the macroscopic quantities 160
4.2.3.2 Discretizing the collision operator 163
4.2.3.3 Discretizing the acceleration term 166

4.3 Updating and truncating the discretized equation 167

4.3.1 Solving a linear system of tensor-product structure 167
4.3.2 SVD truncation . 169
4.3.3 The first-order scheme . 169

4.4 Numerical tests . 170

4.4.1 The 0D2V Leonard-Bernstein-Fokker-Planck equation 171

viii

4.4.2 The 1D2V Vlasov-Leonard-Bernstein-Fokker-Planck equation . 173

4.5 Conclusions and follow-up work . 180

BIBLIOGRAPHY . 181

Appendix

A AN ILLUSTRATIVE EXAMPLE WITH IMEX(2,2,2) 195
B THE SECOND-ORDER SCHEME WITH CRANK-NICOLSON 197
C THE SECOND-ORDER SCHEME WITH BDF2 201
D NONDIMENSIONALIZING THE 1D2V

VLASOV-LEONARD-BERNSTEIN-FOKKER-PLANCK
EQUATION IN CYLINDRICAL COORDINATES 205

E DERIVING THE BALANCE EQUATIONS FOR TOTAL MASS,
MOMENTUM AND ENERGY . 208

F STENGER QUADRATURE NODES AND WEIGHTS 213
G A QUASI-NEWTON SOLVER FOR THE MACROSCOPIC

SYSTEM . 214
H PERMISSIONS . 217

ix

LIST OF TABLES

2.1 Nodes and weights for the order-n Gauss-Legendre quadrature over
[−1, 1]. 40

2.2 Convergence study with spatial mesh refinement for equation (2.4.2)
with forward Euler at Tf = 1. 64

2.3 Convergence study with spatial mesh refinement for equation (2.4.3)
with RK4 at Tf = 1. 64

2.4 Convergence study with spatial mesh refinement for equation (2.4.4)
with RK4 at Tf = 1. 65

2.5 Convergence study with spatial mesh refinement for equation (2.4.5)
with forward Euler and CFL = 8 at Tf = 1. 66

2.6 Convergence study with spatial mesh refinement for equation (2.4.6)
with RK4 and CFL = 0.95 at Tf = 0.5. 67

2.7 Convergence study with spatial mesh refinement for equation (2.4.6)
with RK4 and CFL = 8 at Tf = 0.5. 68

2.8 Convergence study with spatial mesh refinement for equation (2.4.7)
with RK4 and CFL = 0.95 at Tf = 1.5. 69

2.9 Convergence study with spatial mesh refinement for equation (2.4.7)
with RK4 and CFL = 8 at Tf = 1.5. 70

2.10 Convergence study with spatial mesh refinement for equation (2.4.10)
with IMEX(2,3,3) at Tf = 1. 71

2.11 Convergence study with spatial mesh refinement for equation (2.4.11)
with IMEX(2,3,3) at Tf = 1. 72

2.12 Convergence study with spatial mesh refinement for equation (2.4.12)
with IMEX(2,3,3) at Tf = 1. 74

x

2.13 Convergence study with spatial mesh refinement for equation (2.4.13)
with IMEX(4,4,3) at Tf = 1. 75

2.14 Convergence study with spatial mesh refinement for equation (2.4.15)
with IMEX(2,3,3) and Strang splitting at Tf = 0.5. 76

2.15 Convergence study with spatial mesh refinement for equation (2.4.16)
with IMEX(4,4,3) and Strang splitting at Tf = 0.5. 77

2.16 Convergence study with spatial mesh refinement for equation (2.4.17)
with IMEX(2,3,3) and Strang splitting at Tf = 0.1. 78

2.17 Convergence study with spatial mesh refinement for equation (2.4.18)
with IMEX(2,3,3) and Strang splitting at Tf = 0.5. 79

2.18 n = π, v = 0, and T = 3. 80

2.19 Convergence study with spatial mesh refinement for equation (2.4.19)
with IMEX(2,3,3) and Strang splitting at Tf = 0.5. 82

3.1 The dominant computational cost to set up and solve the Sylvester
equations applicable to the proposed implicit low-rank integrator.
The reference Sylvester equations are equations (3.2.6) and (3.2.8). 123

3.2 CPU runtime of the second-order ADI method. Final time Tf = 1
and time-stepping size ∆t = 0.05. 128

3.3 CPU runtime of the first-order scheme with backward Euler. We use
the rank-2 initial condition (3.3.2), initial rank r0 = ceil(N/3),
tolerance ϵ = 1.0E − 10, and time-stepping size ∆t = 0.05. 129

3.4 CPU runtime of the second-order scheme with stiffly-accurate DIRK2.
We use the rank-2 initial condition (3.3.2), initial rank r0 = ceil(N/3),
tolerance ϵ = 1.0E − 10, and time-stepping size ∆t = 0.05. 131

3.5 CPU runtime of the second-order scheme with Crank-Nicolson. We
use the rank-2 initial condition (3.3.2), initial rank r0 = ceil(N/3),
tolerance ϵ = 1.0E − 10, and time-stepping size ∆t = 0.05. 132

3.6 CPU runtime of the second-order scheme with BDF2. We use the
rank-2 initial condition (3.3.2), initial rank r0 = ceil(N/3), tolerance
ϵ = 1.0E − 10, and time-stepping size ∆t = 0.05. 133

xi

3.7 Convergence study with spatial mesh refinement of the second-order
ADI method. Final time Tf = 1 and time-stepping size ∆t = 3∆x. . 134

3.8 Convergence study with spatial mesh refinement of the first-order
scheme with backward Euler (with diagonalization). Final time
Tf = 1, initial rank r0 = ceil(N/3), tolerance ϵ = 1.0E − 10, and
time-stepping size ∆t = 3∆x. 135

3.9 Convergence study with spatial mesh refinement of the second-order
scheme with stiffly-accurate DIRK2 (with diagonalization). Final
time Tf = 1, initial rank r0 = ceil(N/3), tolerance ϵ = 1.0E − 10, and
time-stepping size ∆t = 3∆x. 136

3.10 Convergence study with spatial mesh refinement of the second-order
scheme with Crank-Nicolson (with diagonalization). Final time
Tf = 1, initial rank r0 = ceil(N/3), tolerance ϵ = 1.0E − 10, and
time-stepping size ∆t = 3∆x. 138

3.11 Convergence study with spatial mesh refinement of the second-order
scheme with BDF2 (with diagonalization). Final time Tf = 1, initial
rank r0 = ceil(N/3), tolerance ϵ = 1.0E − 10, and time-stepping size
∆t = 3∆x. 139

4.1 R = 1, n = π, v = 0 and T = 3. 172

4.2 The average CPU runtime per time-step simulating the VLBFP
equation to relaxation. Spatial mesh Nx = 80, velocity mesh
N|| ×N⊥ = 120× 120, singular value tolerance ϵ = 1.0E − 05, Stenger
quadrature K = 15. 180

D.1 Reference quantities. 207

xii

LIST OF FIGURES

1.1 (left) The Eulerian framework; (right) The Lagrangian framework. . 6

1.2 Tracing the characteristics backwards in time for the Lax-Wendroff
method. 8

1.3 (left) Approximating the characteristics in the Eulerian-Lagrangian
framework; (right) Following the characteristics exactly in the
semi-Lagrangian framework. 9

2.1 (left) Without WENO; (right) With WENO. 23

2.2 The space-time region Ωj. 42

2.3 The space-time region 1Ωj. 59

2.4 The space-time region 2Ωj. 59

2.5 Error plot corresponding to equation (2.4.3) using RK4 with final
time Tf = 0.5. 66

2.6 Error plot corresponding to equation (2.4.4) using RK4 with final
time Tf = 0.5. 66

2.7 Error plot for (2.4.6) with RK4 at Tf = 0.5. Nx = Ny = 200. 68

2.8 Plot of the numerical solution to (2.4.6) with SSP RK3 and
CFL = 2.2 at Tf = 2π. Nx = Ny = 100. 68

2.9 Error plot for (2.4.7) with RK4 at Tf = 1.5. Nx = Ny = 200. 70

2.10 Plot of the numerical solution to (2.4.7) with g(t) = 1, SSP RK3 and
CFL = 8 at Tf = 5π. Nx = Ny = 100. 70

2.11 IMEX(2,3,3), ϵ = 1, Final time Tf = 0.5. 72

xiii

2.12 IMEX(2,3,3), ϵ = 1, Final time Tf = 0.5. 72

2.13 IMEX(2,3,3), ϵ = 0.1, Final time Tf = 0.5. 75

2.14 IMEX(4,4,3), Final time Tf = 0.5. 75

2.15 IMEX(2,3,3), ϵ = 1, Final time Tf = 0.5. 77

2.16 IMEX(4,4,3), ϵ = 1, Final time Tf = 0.1. 77

2.17 IMEX(2,3,3), ϵ = 1, Final time Tf = 0.1. 79

2.18 IMEX(2,3,3), ϵ = 0.1, Final time Tf = 0.2. 79

2.19 IMEX(2,3,3), Final time Tf = 0.1. 82

2.20 Figures (a)-(e): Relative macro-parameters for equation (2.4.19) with
initial distribution of two Maxwellians defined by Table 2.18. Mesh
Nvx = Nvy = 200, CFL = 6. Figure (f): The initial distribution. . . 83

2.21 Various snapshots of the numerical solution to equation (2.4.19) with
initial distribution of two Maxwellians defined by Table 2.18. Mesh
Nvx = Nvy = 200, CFL = 6. Times: 0.15, 0.30, 0.45, 0.60, 0.75, 3. . 84

3.1 Plotting the amplification factor for backward Euler method applied
to the heat equation. 103

3.2 Plotting the amplification factor for Crank-Nicolson method applied
to the heat equation. 104

3.3 Plotting the absolute value of the amplification factor A+(ξ) for
BDF2 applied to the heat equation. 106

3.4 Plotting the absolute value of the amplification factor A−(ξ) for
BDF2 applied to the heat equation. 107

3.5 Plotting the amplification factor for DIRK2 applied to the heat
equation. 109

3.6 Error plot of second-order ADI method with mesh 320× 320. The
errors are shown for initial conditions (3.3.2)-(3.3.4). 135

xiv

3.7 Error plot of first-order scheme using backward Euler with mesh
320× 320 and tolerance ϵ = 1.0E − 10. The errors are shown for
initial conditions (3.3.2)-(3.3.4). 136

3.8 Error plot of second-order scheme using stiffly-accurate DIRK2 with
mesh 320× 320 and tolerance ϵ = 1.0E − 10. The errors are shown
for initial conditions (3.3.2)-(3.3.4). 137

3.9 Error plot of second-order scheme using Crank-Nicolson with mesh
320× 320 and tolerance ϵ = 1.0E − 10. The errors are shown for
initial conditions (3.3.2)-(3.3.4). 138

3.10 Error plot of second-order scheme using BDF2 with mesh 320× 320
and tolerance ϵ = 1.0E − 10. The errors are shown for initial
conditions (3.3.2)-(3.3.4). 139

3.11 The rank evolution using backward Euler with mesh 640× 640 and
tolerance ϵ = 1.0E − 10. The rank is shown for all three initial
conditions (3.3.2)-(3.3.4). (left) Time-stepping size ∆t = 0.05; (right)
Time-stepping size ∆t = 3∆x. 140

3.12 The rank evolution using stiffly-accurate DIRK2 with mesh 640× 640
and tolerance ϵ = 1.0E − 10. The rank is shown for all three initial
conditions (3.3.2)-(3.3.4). (left) Time-stepping size ∆t = 0.05; (right)
Time-stepping size ∆t = 3∆x. 141

3.13 The rank evolution using Crank-Nicolson with mesh 640× 640 and
tolerance ϵ = 1.0E − 10. The rank is shown for all three initial
conditions (3.3.2)-(3.3.4). (left) Time-stepping size ∆t = 0.05; (right)
Time-stepping size ∆t = 3∆x. 141

3.14 The rank evolution using BDF2 with mesh 640× 640 and tolerance
ϵ = 1.0E − 10. The rank is shown for all three initial conditions
(3.3.2)-(3.3.4). (left) Time-stepping size ∆t = 0.05; (right)
Time-stepping size ∆t = 3∆x. 142

4.1 The phase space domain of the 1D2V model. The direction of the
parallel velocity component coincides with the spatial direction. . . 153

xv

4.2 Mesh 400× 400, time-stepping size ∆t = 0.3, Stenger quadrature
K = 200, tolerances ϵ = 1.0E − 05 and ϵ = 1.0E − 02. Figure (a):
initial distribution of two Maxwellians defined by Table 4.1. Figure
(b): rank evolution. Figure (c): L1 error, ∥fα − fM∥1. Figure (d):
discrete Kullback relative entropy, H∆(fα, fM). 174

4.3 Time-stepping size ∆t = 0.3, Stenger quadrature K = 200, tolerance
ϵ = 1.0E − 05, meshes 200× 200 and 400× 400. Figure (a):
equilibrium distribution function, fM . Figure (b): rank evolution.
Figure (c): L1 error, ∥fα − fM∥1. Figure (d): discrete Kullback
relative entropy, H∆(fα, fM). 175

4.4 Figure (a): initial shock (4.4.3) for the 1D2V VLBFP test. The
smoothed number density, drift velocity, ion temperature and electron
temperature profiles are shown. Spatial mesh Nx = 80. Figure (b):
average nodal rank. 176

4.5 Time-stepping size ∆t0 = 5× 10−3 and ∆tk = 0.3, k = 1, ..., Nt,
Stenger quadrature K = 15, tolerance ϵ = 1.0E − 05, spatial mesh
Nx = 80, velocity mesh 120× 120. Figure (a): total mass (4.2.8a).
Figure (b): total momentum (4.2.8b). Figure (c): total energy
(4.2.8c). Figure (d): total electron pressure pe(x, t) = (neTe)(x, t). . 178

4.6 Various snapshots of the numerical solution to the 1D2V VLBFP
equation with initial distribution 4.4.3. Time-stepping size
∆t0 = 5× 10−3 and ∆tk = 0.3, k = 1, ..., Nt, Stenger quadrature
K = 15, tolerance ϵ = 1.0E − 05, spatial mesh Nx = 80, velocity mesh
120× 120. Times: 25, 50, 75, 100, 125, 150. 179

A.1 The space-time region 1Ωj for IMEX(2,2,2). 195

C.1 The second-order scheme with BDF2. 201

H.1 Elsevier’s copyright permission for authors (screenshot 1).
https://www.elsevier.com/about/policies/copyright (link here). . . 218

H.2 Elsevier’s copyright permission for authors (screenshot 2).
https://www.elsevier.com/about/policies/copyright/permissions (link
here). 218

xvi

https://www.elsevier.com/about/policies/copyright
https://www.elsevier.com/about/policies/copyright/permissions
https://www.elsevier.com/about/policies/copyright/permissions

ABSTRACT

Many physical phenomena can be described by nonlinear partial differential

equations (PDEs). Yet, analytic solutions are oftentimes unavailable, and lab experi-

ments can be time consuming and expensive; thus motivating the need for numerical

solutions. Constructing low-storage, efficient and robust algorithms for solving PDEs

comes with several computational challenges. First, classical discretization methods

suffer from the curse of dimensionality, that is, the computational cost grows expo-

nentially as the number of dimensions increases. Second, shock formations and sharp

gradient structures that develop in certain PDEs of interest are challenging to capture

due to the Gibbs phenomenon, that is, steep oscillations that occur near discontinuities.

And third, satisfying physical properties such as conservation, equilibrium preservation

and relative entropy dissipation is desired at the discrete level to avoid nonphysical be-

haviors. The goal of this dissertation is to develop efficient and robust algorithms for

solving high-dimensional PDEs in fluid and kinetic applications.

The first contribution of this dissertation is the development of a new Eulerian-

Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection

and convection-diffusion problems. Eulerian-Lagrangian and semi-Lagrangian methods

have become popular ways to solve hyperbolic conservation laws due to their ability to

allow large time-stepping sizes. The proposed scheme is formulated by integrating the

PDE on a space-time region partitioned by approximations of the characteristics deter-

mined from the Rankine-Hugoniot jump condition; and then rewriting the time-integral

form into a time-differential form to allow application of Runge-Kutta methods via the

method of lines. The scheme can be viewed as a generalization of the standard Runge-

Kutta finite volume (RK-FV) scheme for which the space-time region is partitioned by

approximate characteristics with zero velocity. The high-order spatial reconstruction is

xvii

achieved using the recently developed weighted essentially non-oscillatory scheme with

adaptive order (WENO-AO); and the high-order temporal accuracy is achieved by

explicit Runge-Kutta methods for convection equations and implicit-explicit (IMEX)

Runge-Kutta methods for convection-diffusion equations. The algorithm extends to

higher dimensions via dimensional splitting. Numerical experiments demonstrate the

algorithm’s robustness, high-order accuracy, and ability to handle extra large time-

steps.

The second contribution of this dissertation is the development of an implicit

low-rank method for solving diffusion equations. Low-rank tensor methods have be-

come a popular way to efficiently solve and store solutions of high-dimensional time-

dependent PDEs. By taking advantage of low-rank structures inherent to some so-

lutions of time-dependent problems, low-rank tensor methods reduce the storage re-

quirements and hence the computational complexities. This helps avoid the curse of

dimensionality. However, some PDEs of interest contain stiff operators that require im-

plicit time integrators for reasonable computational efficiency. The proposed scheme

is formulated by using traditional implicit time integrators to evolve the solution; de-

composing the solution into one-dimensional time-dependent bases connected by time-

dependent coefficients; and updating the one-dimensional bases one target direction at

a time by freezing the solution in all other non-target directions. Projecting the equa-

tion onto the updated bases, the time-dependent coefficients are then updated. The

updated solution is truncated using a basis removal procedure based on the singular

value decomposition. The backward Euler method is used for the first-order scheme.

Second-order schemes are also presented using second-order stiffly-accurate diagonally

implicit Runge-Kutta methods, Crank-Nicolson method, and second-order backward

differentiation formula. Numerical experiments demonstrate the algorithm’s conver-

gence and computational efficiency from enforcing the low-rank structure in solutions.

The third contribution of this dissertation is the developement of a low-rank ten-

sor method for solving the 1D2V Vlasov-Fokker-Planck (VFP) equation. The Vlasov-

Fokker-Planck and Fokker-Planck type equations are kinetic models that are used to

xviii

describe weakly coupled collisional plasmas. Developing efficient numerical methods for

solving such models is of growing interest due to their applications in next-generation

designs of field reversed configuration (FRC) thrusters and intertial confinement fusion

(ICF) capsules. We consider a hybrid kinetic-ion fluid-electron model in which the ions

are kinetically treated using the VFP equation and the electrons are treated using a

fluid model. The proposed scheme is formulated by assuming a low-rank tensor struc-

ture of the solution in velocity space; discretizing the collision operator with the robust

structure-preserving Chang-Cooper (SPCC) method; updating the solution by solving

linear systems of tensor product structure; and truncating the solution using a basis

removal procedure based on the singular value decomposition. Numerical experiments

demonstrate the scheme’s structure-preserving qualities, robustness and computational

efficiency from enforcing the low-rank structure in solutions.

xix

Chapter 1

INTRODUCTION

The primary focus of the algorithms herein is on efficiency, and the secondary

focus is on structure preservation. Our approach to enforcing efficiency is twofold:

(Efficiency in time) develop high-order accurate methods that allow very large time-

stepping sizes, and (Efficiency in space) develop efficient methods that take advantage

of a solution’s low-rank structure. Structure preservation is enforced when appropriate

by utilizing well-developed robust schemes. Before overviewing the three algorithms

to be presented, we first outline the differences between fluid and kinetic models, and

the differences between Eulerian, Lagrangian and Eulerian-Lagrangian frameworks.

1.1 Kinetic models vs fluid models

In this dissertation we are primarily concerned with finding numerical solutions

to PDEs common in fluid and kinetic dynamics. That said, there are two descriptions

in which a system can be treated: either kinetically or as a fluid [87, 114, 132]. A

kinetic description comes from a molecular point of view in which particles are

described by a probability distribution function f(x,v, t) : R3 × R3 × R+ → R+. The

distribution function represents the probability of finding a certain particle at spatial

position x ∈ R3 with velocity v ∈ R3 at time t ∈ R+. A fluid description comes from

a continuum point of view in which most of the particles in a many-particle system are

associated most of the time with a particular fluid element to which Newton’s laws of

motion apply. Depending on the application, one can derive the fluid equations either

from a first principles kinetic model (common treatment in most physics textbooks) or

by investigating Newton’s laws of motion over a fluid element/control volume (common

treatment in most engineering textbooks). There are subtle differences between the

1

two derivations, and sometimes one approach might be more natural than the other.

This section will only derive a fluid model from a kinetic model, and we refer the reader

to [114] for the other derivation.

1.1.1 Starting with a kinetic model

We start with a kinetic model describing the distribution function f . For the

sake of demonstration, we assume a collision-dominated plasma for which both kinetic

and fluid treatments might be suitable. A plasma can only be accurately treated as a

fluid under high collisionality between particles; even then, a kinetic treatment might

still be preferred. A common first principles model is the kinetic equation

∂f

∂t
+ v · ∇xf +

q

m
(E+ v ×B) · ∇vf = C(f), (1.1.1)

where q is the particle charge, m is the particle mass, E and B are respectively the

electric and magnetic fields, and C(f) is in general a nonlinear functional of f . When

describing a collision-dominated plasma, C(f) is usually taken to be the Boltzmann

collision operator [31, 87, 132] or a Fokker-Planck type collision operator [1, 91, 93, 132];

additional theoretical treatments of the Boltzman and Fokker-Planck operators can be

found in [9, 50, 53, 54, 78, 134, 170]. Equation (1.1.1) is known as the Vlasov equation

when C(f) ≡ 0. Describing equation (1.1.1) and the various collision operators is not

the purpose of this chapter, so we leave their discussion to the references mentioned.

1.1.2 Deriving a fluid model from a kinetic model

Under the high collisionality assumption, one could take moments of equation

(1.1.1) and derive the moment equations. By “taking moments” we mean multiplying

equation (1.1.1) by powers of velocity v (or some change of variables w = v − u) and

integrating over velocity space R3. The result is a system of equations only dependent

on physical space and time.

The zeroth-order moment ⟨·, 1⟩v corresponds to mass conservation, the first-

order moment ⟨·,v⟩v corresponds to momentum conservation, and the second-order

2

moment ⟨·,vv⟩v corresponds to energy conservation (for the plasma stress tensor);

vv denotes the dyadic/outer/tensor product of v and v. For brevity, we only present

the first two moments for the Vlasov equation (i.e., C(f) ≡ 0). After computing the

zeroth- and first-order moments of the Vlasov equation for a single (ion) species α, one

gets the moment equations [87, 132]

∂nα

∂t
+∇x · (nαuα) = 0, (1.1.2a)

∂

∂t
(mαnαuα) +∇x · (mαnαuαuα +Pα) = qαnα (E+ uα ×B) , (1.1.2b)

where the number density and bulk velocity are respectively

nα(x, t) =

∫∫∫
R3

fα(x,v, t)d
3v, uα(x, t) =

1

nα(x, t)

∫∫∫
R3

vfα(x,v, t)d
3v,

and the thermal pressure tensor is

Pα =

∫∫∫
R3

mα(v − uα)(v − uα)fα(x,v, t)d
3v.

⇕

nαUα := mαnαuαuα +Pα =

∫∫∫
R3

mαvvfα(x,v, t)d
3v.

Multiplying by the mass mα and summing moment equations (1.1.2) over all the

charged species, one gets the conservation of mass and momentum [87, 132]

∂ρ

∂t
+∇x · (ρu) = 0, (1.1.3a)

∂

∂t
(ρu) +∇x · (ρuu+P) = ρcE+ J×B, (1.1.3b)

where the mass density and charge density are respectively

ρ =
∑
α

(mαnα), ρc =
∑
α

(qαnα),

3

the bulk velocity and momentum are respectively

u =
1

ρ

∑
α

(mαnαuα), ρu =
∑
α

(mαnαuα),

the electric current density is

J =
∑
α

(qαnαuα),

and the thermal pressure tensor is

P =
∑
α

∫∫∫
R3

mα(v − u)(v − u)fα(x,v, t)d
3v.

⇕

ρU := ρuu+P =
∑
α

∫∫∫
R3

mαvvfα(x,v, t)d
3v.

Further deriving up to theNth-order moment similar to equations (1.1.2),(1.1.3)

yields the moment system/fluid model. We note that a fluid is a many-particle

system for which the first one, two or three moments of the distribution function form

a sufficient and self-contained/closed description [132]. Observe that system (1.1.2) is

in general not closed unless we know the stress tensor, P. In many applications, the

second-order moment is expressed as an equation of state in terms of the lower-order

moments.

1.1.3 The moment closure problem

As seen in equations (1.1.2), the system is not closed. That is, it is an under-

determined system. The flux term in a given moment equation requires the conserved

quantity from the next moment equation. For example, the continuity equation for

mass ρ requires momentum ρu, which requires P in the momentum conservation equa-

tion, which requires more quantities the more moments one takes. This is known as the

moment closure problem, and constructing a general way to close the moment system

4

is an open problem. Using a fluid model requires closure of the moment system (up

to the Nth-order moment). Depending on the system, the flux term in the highest-

order moment equation must be either known/assumed or determined by some other

equation(s).

We mentioned earlier that there are slight differences between deriving the fluid

equations from a kinetic model versus deriving them from Newton’s laws of motion

over a control volume. One difference is that in the continuum view other physical

assumptions are often made. These physical assumptions inherently close the mo-

ment system. For example, the Navier-Stokes equation for linear momentum assumes

a Newtonian fluid in which the viscous stresses and deformation/strain-rate are lin-

early dependent [114]. These physical assumptions are mathematically justified by the

Chapman-Enskog theory, in which the transport terms are expressed in terms of molec-

ular parameters [37, 132]. Thus, the Chapman-Enskog theory is a (classical) method

that can be used to close moment systems derived from kinetic models. The takeaway

is that the Chapman-Enskog theory bridges the two approaches for deriving the fluid

equations.

Kinetic and fluid models are two hierarchical ways to represent a system. Al-

though the moment equations are typically faster to solve numerically, there are many

reasons why kinetic models are sometimes preferred. Kinetic models better describe

the system, particularly in the plasma physics setting, since the distribution function

describes the behavior of the particles; the fluid system only computes the macro-

scopic quantities. Furthermore, the fluid equations in the plasma physics setting tend

to be better suited for Maxwellian distribution functions; the distribution functions in

plasma physics settings are not always Maxwellian. And lastly, as mentioned earlier

closing the moment system in a general way is an open problem; to close the system,

certain physical assumptions might be necessary.

5

1.2 Eulerian, Lagrangian and Eulerian-Lagrangian frameworks

There are two standard frameworks in which we describe the dynamics of a

system when solving partial differential equations: Eulerian and Lagrangian. Each one

can be described by a physical motivation. Consider an arbitrary fluid flow as shown

in Figure 1.1. There are two ways we can intuitively track the fluid flow. We could

fix some control volume in space and observe how the flow evolves within the control

volume (i.e., the Eulerian framework). Or, we could focus on tracking the movements

of a fixed number of fluid particles (i.e., the Lagrangian framework). Notice in Figure

1.1 that the fluid particle being tracked in the Lagrangian framework follows a single

pathline.

Figure 1.1: (left) The Eulerian framework; (right) The Lagrangian framework.

These physical viewpoints motivate and influence the design of numerical algo-

rithms. For simplicity, consider solving for a solution u(x, t), where x ∈ [0, 1] is space

and t ∈ [0, Tf] is time. Extending these descriptions to numerical frameworks, one

could evolve the PDE on a fixed spatial mesh (Eulerian framework), or move some

fixed spatial points over the paths on which the solution remains constant (Lagrangian

framework).

1.2.1 Eulerian framework

Eulerian methods update the solution over a stationary mesh. The main ad-

vantage of Eulerian methods is that the fixed mesh allows high-order spatial resolution

6

methods to be utilized [43, 117, 120, 157]; specific examples of high-order spatial res-

olution methods are discussed in Chapter 2. These methods approximate the solution

in space to high-order accuracy while also controlling spurious oscillations caused by

Gibbs’ phenomenon (i.e., steep oscillations observed when numerically approximating

sharp gradients and jump discontinuities). Sharp gradients and jump discontinuities

frequently occur in fluid and plasma simulations. Hence, there is a great desire to

develop algorithms that can accommodate high-order spatial resolution methods.

Discretizing the solution u(x, t) in both space and time, assume a spatial mesh

of Nx nodes

0 = x1 < x2 < ... < xNx−1 < xNx = 1,

and assume Nt + 1 successive incremental time-steps

0 = t0 < t1 < ... < tNt−1 < tNt = Tf .

There are many numerical methods to obtain the updated solution un+1
j ≈ u(xj, t

n+1)

from the current solution unj ≈ u(xj, t
n). Take for instance the Lax-Wendroff method

when solving ut + ux = 0, u(x, 0) = u0(x),

un+1
j = unj −∆t

unj+1 − unj−1

2∆x
+

∆t2

2

unj−1 − 2unj + unj−1

∆x2
, (1.2.1)

in which un+1
j is dependent on unj−1, u

n
j and unj+1. We call [xj−1, xj+1] the numerical

domain of dependence since the updated solution at time tn+1 depends on the

solution at time tn within the domain [xj−1, xj+1]. Furthermore, the space-time curves

along which the solution remains constant are called characteristics. As seen in Fig.

1.2, we can trace the characteristics backwards in time from time tn+1 to time tn to

obtain the physical domain of dependence. This leads us to the well-known CFL

condition, stated below [118].

Theorem 1.1 (CFL condition [118]). A necessary condition for numerical stability is

7

Figure 1.2: Tracing the characteristics backwards in time for the Lax-Wendroff method.

that the numerical domain of dependence must contain the physical domain of depen-

dence.

Notice that depending on how fast the fluid particles are moving, the time-

stepping size ∆t might need to be much smaller than the mesh size ∆x in order to

satisfy the CFL condition. This is unideal since a smaller time-stepping size means

more time-steps need to be taken, and hence we would require a greater computational

run-time. Although Eulerian methods have the benefit of incorporating high-order

spatial resolution methods that approximate the solution to high-order accuracy and

control spurious oscillations, their efficiency is hindered by the CFL condition.

1.2.2 Lagrangian framework

In kinetic simulations, Lagrangian methods update the solution by following a

finite number of points/particles exactly along the characteristics. Unlike the Eulerian

methods, Lagrangian methods do not suffer from the CFL condition since the numerical

domain of dependence exactly matches the physical domain of dependence. Popular

Lagrangian methods used in kinetic simulations (e.g., particle in cell methods [68, 83,

95, 173]) have a fixed number of particles follow trajectories that drive the system.

Following these trajectories could cause a higher density of particles. As such, a re-

meshing step that re-positions the mesh/particles away from the shock is often required,

increasing the computational complexity. Furthermore, Lagrangian methods are known

8

to have a significant amount of noise. Despite these challenges, Lagrangian methods

remain a very popular choice primarily due to their computational efficiency in higher

dimensions; in higher dimensions, the computational cost of a re-meshing step is very

small relative to the overall complexity.

1.2.3 Eulerian-Lagrangian framework

Eulerian-Lagrangian and semi-Lagrangian methods reap the benefits of both

Eulerian and Lagrangian methods by combining their frameworks [39, 55, 111, 133,

142, 144]. Generally speaking, an Eulerian-Lagrangian method works on a station-

ary background grid so that high-order spatial resolutions can be used (the Eulerian

part), and characteristics stemming from the cell boundaries are then traced back-

ward/forward in time to relax the CFL constraint (the Lagrangian part). As seen in

Fig. 1.3, we can approximate the characteristics using linear space-time curves; or we

can trace the characteristics exactly. Methods that trace the characteristics exactly

are called semi-Lagrangian methods. Note that the Eulerian framework is the special

case where the approximate characteristics are vertical space-time lines.

Figure 1.3: (left) Approximating the characteristics in the Eulerian-Lagrangian frame-
work; (right) Following the characteristics exactly in the semi-Lagrangian framework.

After tracing the characteristics backward in time, the solution is computed

at the traceback points x∗
j+ 1

2

. Since the solution remains constant along characteris-

tics, the solution at time tn+1 is easily obtained by evolving back up the approximate

9

characteristics. This procedure is repeated at each time step. By evolving the solu-

tion along approximate characteristics in a similar fashion to Lagrangian methods, the

CFL condition is relaxed. As such, the largest allowable time-stepping size is signifi-

cantly increased. Meanwhile, we can also utilize high-order spatial resolution methods

because we are working on a fixed background mesh at time tn+1, as seen in Fig. 1.3.

1.3 The proposed schemes

The three schemes that make up this dissertation are outlined. The first scheme

emphasizes efficiency in time: a robust and high-order accurate Eulerian-Lagrangian

method for convection-diffusion equations. The second scheme emphasizes efficiency

in space: an Eulerian method for diffusion equations that takes advantage of low-rank

structures in solutions. The third scheme emphasizes efficiency in space and structure

preservation: an Eulerian method for the Vlasov-Fokker-Planck equation that takes

advantage of low-rank structures in solutions.

1.3.1 An Eulerian-Lagrangian scheme for convection-diffusion equations

Motivation and existing methods

As discussed in Section 1.2.3, Eulerian-Lagrangian (EL) and semi-Lagrangian

(SL) methods are attractive mostly due to their ability to allow large time steps.

In particular, EL and SL schemes [30, 152, 179] have proven to be computationally

effective when solving hyperbolic problems because of their ability to employ high

spatial resolution schemes while admitting very large CFL with numerical stability. In

fact, this is what has led to their recent popularity in the plasma physics community

[39, 111, 142, 143, 144, 151]. Such methods have been developed in a wide variety of

frameworks: discontinuous Galerkin [28, 55, 144, 151], finite difference [29, 39, 100,

121, 142, 143, 178], and finite volume [2, 15, 38, 46, 72, 98, 99, 133].

10

Although the SL and EL frameworks are similar in spirit, the SL framework

assumes exact characteristic tracing and hence poses difficulties when considering non-

linear problems. Two other methods similar to EL and SL methods are the arbitrary

Lagrangian-Eulerian (ALE) methods, where an arbitrary mesh velocity not necessarily

aligned with the fluid velocity is defined [21, 22, 23, 24, 58, 94, 141], and moving mesh

methods, where the PDE is first evolved in time and then followed by some mesh-

redistribution procedure [122, 123, 129, 152, 161, 168]. The main difference between

these two methods and the previously mentioned methods is that they move the mesh

adaptively to focus resolving the solution around sharp transitions. By contrast, EL

and SL methods evolve the equation by following characteristics.

Our goal was to develop a new high-order EL method in the finite volume frame-

work using method-of-lines (MOL) RK time discretizations. Finite volume methods are

attractive since they are naturally mass conservative, easy to physically interpret, and

modifiable for nonuniform grids. Similar to the recent developments made by Huang,

Arbogast, and Qiu [98, 99], we use approximate characteristics to define a traceback

space-time region, and then use WENO reconstructions to evaluate the modified flux.

Huang and Arbogast developed a re-averaging technique that allows high-order recon-

struction of the solution at arbitrary points by applying a standard WENO scheme

[43, 157] over a uniform reconstruction grid that is defined separately. They then used

a natural continuous extension [183] of Runge-Kutta schemes, which requires the so-

lution at several Gaussian nodes of the interval [tn, tn+1], to evolve the solution along

the approximate characteristics.

The proposed method

The novelty of our proposed method is twofold: (1) the partition of space-time

regions formed by linear approximations of the characteristic curves, and (2) inte-

grating the differential equation over the partitioned space-time regions, followed by

rewriting the space-time integral form of the equation into a spatial-integral time-

differential form. In this way, a MOL RK type method can be directly applied for time

11

discretization, thus avoiding the need to use a natural continuous extension of RK

schemes. To be more precise, we construct linear approximate characteristics by using

the Rankine-Hugoniot jump condition to define the traceback space-time regions. If

the linear approximate characteristics are defined with zero velocity, then the proposed

EL-RK-FV scheme reduces to the standard RK-FV method [157]. Whereas, when lin-

ear space-time curves adequately approximate the exact characteristics, a large time

stepping size is still permitted. We use WENO-AO to perform a solution remapping of

the uniform cell averages onto the possibly nonuniform traceback cells. As discussed in

Section 2.1.1.2, the recently developed WENO-AO schemes [8, 11, 12] are robust and

guarantee the existence of the linear weights at arbitrary points. We note that Chen,

et al. used WENO-AO schemes in the SL framework [39], and Huang and Arbogast

have recently used WENO-AO schemes in the Eulerian framework [7, 8]. RK methods

are used to evolve the MOL system along the approximate characteristics. Explicit

RK methods, such as the strong stability-preserving (SSP) RK methods [77], are used

for convection equations, and implicit-explicit (IMEX) RK methods [10, 44, 92] are

used for convection-diffusion equations. In the latter case, the non-stiff convective

term is treated explicitly and the stiff diffusive term is treated implicitly. Dimensional

splitting is used to extend the one-dimensional algorithm to solve multi-dimensional

problems. The proposed method is high-order accurate, capable of resolving discon-

tinuities without oscillations, mass conservative, and stable with large time stepping

sizes.

1.3.2 A low-rank Eulerian scheme for diffusion equations

Motivation and existing methods

The high-dimensionality of kinetic models and physical systems poses a major

challenge in computing numerical solutions. As the number of dimensions increases,

classical discretization methods such as finite differences and finite elements experience

exponential growth in computational cost and the degrees of freedom; this is commonly

12

known as the curse of dimensionality. To overcome the curse of dimensionality in

solving high-dimensional equations, recent developments have taken advantage of low-

rank structures inherent to some of these PDEs. For example, the solution to the

multi-dimensional heat equation is low-rank in the sense that its Fourier coefficients

quickly decay as the wave number increases. Even if the analytic solution is of high-

rank (e.g., the Fourier series solution of the multi-dimensional heat equation), it can

be approximated by a low-rank function (e.g., a truncated Fourier series solution).

Townsend, et al. investigated why and when many datasets (e.g., in the form of

matrices and tensors) that occur in real world applications are compressible and have

low-rank structure [154, 175]. Given that many time-dependent systems of interest

have low-rank solutions, particularly kinetic models, developing low-rank numerical

methods could lead to significant computational savings.

Over the past couple of decades, significant progress has been made in de-

veloping low-rank tensor methods for solving time-dependent problems [41, 82, 112].

Numerical tensor decompositions offer great flexibility in reducing the storage and com-

putational complexities of numerical methods. Popular tensor decompositions include

the CANDECOMP/PARAFAC (CP) decomposition [106, 109, 112], tensor train (TT)

decomposition [135, 136], and Tucker and hierarchical Tucker (HT) decompositions

[48, 80, 89, 109, 112, 174]. Several such works have been developed and applied to

nonlinear kinetic models: low-rank semi-Lagrangian method in the TT format [111],

low-rank basis removal method in the HT format that conserves physical invariants

with a projection-based scheme [85], low-rank CP method for Hamiltonian formula-

tions [62], dynamical tensor approximations based on a functional tensor decomposition

[52], and dynamical low-rank methods [45, 64, 65, 105, 107, 125].

Although there has been great progress in developing explicit low-rank methods

for time-dependent problems, there is also a pressing need for high-accuracy implicit

low-rank methods. Several kinetic models in plasma physics of interest to the national

laboratories have stiff operators that describe the collisional interactions between par-

ticles, e.g., Fokker-Planck type equations (see Section 1.1). Due to the stiffness of these

13

collision operators, implicit time integrators are preferred over explicit time integrators.

However, extending low-rank methods (e.g., DLR methods [32, 33, 63, 125]) to high-

accuracy implicit methods is challenging since one needs to seek low-rank solutions

in an implicit setting. Recently, Rodgers and Venturi developed an implicit rank-

adaptive method in which the solution after each time-step is truncated by projecting

onto a low-dimensional tensor manifold [150]. The authors refer to these algorithms as

step-truncation algorithms [149], based on performing a truncation operation onto a

tensor manifold after performing a single time-step with a conventional time integrator.

The proposed method

We propose a novel implicit low-rank method for solving two-dimensional dif-

fusion equations. We represent the time-dependent solution in a low-rank framework.

Similar in spirit to the unconventional integrator [33] and step-truncation methods

[85, 86, 150], we strategically evolve the low-rank decomposition of the solution based

on traditional implicit time-integrators. In particular, the solution is decomposed into

one-dimensional time-dependent bases connected by time-dependent coefficients. We

evolve these one-dimensional bases in a dimension-by-dimension fashion. The target

dimension basis is updated by first freezing and correspondingly projecting the solution

in all the non-target dimensions. Once the bases from all dimensions are updated, we

then evolve the coefficients be a projection onto the subspace spanned by the updated

bases in all dimensions. Finally, a SVD type truncation is applied to further compress

the solution for optimal computational efficiency.

The first-order scheme can be viewed as an equivalent formulation to the un-

conventional DLR method [33]. However, the second-order schemes differ since we

follow a multistage methodology in which the one-dimensional bases from previous

stages are used to construct approximate bases that span rich enough vector spaces.

The proposed method maintains low-rank structure in solutions and is extendable to

higher-order implicit time integrators.

14

1.3.3 A low-rank Eulerian scheme for the Vlasov-Fokker-Planck equation

Motivation and existing methods

In a system of weakly coupled collisional plasmas, the Vlasov-Fokker-Planck

(VFP) equation describes the evolution of each species’ distribution function. When

combined with Maxwell’s equations that evolve the electromagnetic fields, the Vlasov-

Fokker-Planck-Maxwell system provides a first-principles model for such plasmas. Such

models have a wide array of applications that describe laboratory, space and astrophys-

ical plasmas (e.g., field reversed configuration (FRC) thrusters [110], inertial confine-

ment fusion (ICF) capsules [148, 164, 169]). As next-generation designs in these settings

continue to progress and evolve, new concepts will heavily rely on a combination of

forward-predictive modeling and experimental validations. Given the time-consuming

and expensive nature of experimental iterations, numerical simulations could be used

to accelerate and facilitate the design iteration procedure. Since kinetic models de-

scribing these plasmas are high-dimensional (up to six-dimensional phase space; three

dimensions in space and three dimensions in velocity space – 3D3V), designing efficient

algorithms is of the utmost importance. Moreover, enforcing physical properties such

as conservation and structure preservation is highly desired to ensure physically correct

solutions.

The VFP, Vlasov, and Fokker-Planck type equations have a rich computational

history and have been solved in the Eulerian [36, 67, 71, 103, 104, 116, 139, 164, 165,

166, 167], Lagrangian [17, 47, 51, 70, 181], and semi-Lagrangian [56, 111, 142, 151, 156]

frameworks. More recently, these kinetic models have also been solved using tensor and

low-rank methods [45, 57, 64, 65, 66, 85, 111], and moving-mesh type methods based

on thermal velocity-dependent mappings [69, 102, 115, 162]. As mentioned, conserv-

ing physical invariants [1, 6, 13, 64, 85, 155, 162, 163] and preserving physical struc-

tures [26, 27, 36, 49, 63, 96, 97, 103, 104, 139, 144, 151] (e.g., equilibrium-preserving,

positivity-preserving, asymptotic-preserving, relative entropy dissipative) are critical

for computing physically correct solutions, or rather, avoiding non-physical solutions.

15

Our goal is to develop a low-rank method for solving the VFP equation in 1D2V

phase space that has structure-preserving qualities. We take most inspiration from the

very popular Chang-Cooper discretization of the Fokker-Planck operator [26, 36, 131].

By discretizing the flux with a weighted sum of neighboring point values using specially

constructed weights, Chang and Cooper obtain a method that is positivity-preserving,

particle-conserving and equilibrium-conserving. In [139], Pareschi and Zanella general-

ize the Chang-Cooper discretization to more general Fokker-Planck and gradient flow

operators while also extending to arbitrary accuracy. By incorporating the structure-

preserving scheme [139] into a low-rank Eulerian framework, we hope to maintain their

structure-preserving qualities.

The proposed method

We aim to solve the 1D2V VFP equation in 2V cylindrical coordinates. A single

ion species is assumed, and we use a hybrid model in which the ions are treated kineti-

cally with the VFP equation and electrons are treated as a fluid. Furthermore, we use

the linearized Fokker-Planck operator, known as the Leonard-Bernstein-Fokker-Planck

(LBFP) operator. Although linearized, the operator is still nonlinearly dependent on

the solution since the coefficients are nonlinear functionals of the solution. The VFP

equation is nonlinearly coupled with the fluid equation for electron energy.

Our proposed method has three major components that take inspiration from

other works: (1) extending the structure-preserving Chang-Cooper (SPCC) method

in [139] to discretize the 2V Fokker-Planck operator in cylindrical coordinates, (2)

updating the solution using an implicit solver for linear systems of tensor product

structure, and (3) a low-rank treatment similar in spirit to [84, 85, 86]. We note that

the low-rank framework presented here is different from the dynamical low-rank (DLR)

framework because we evolve the entire solution in one step. Whereas, DLR methods

evolve the basis of each dimension separately. We discretize the solution in space and

then solve a 2V system at each spatial node. First-order implicit-explicit (IMEX)

Runge-Kutta scheme is used for temporal discretization.

16

First, the zeroth-, first- and second-order moments of the VFP equation are

coupled with the fluid-electron energy equation to solve for the macroscopic quantities.

These macroscopic quantities are then used to discretize the Fokker-Planck operator

using the SPCC method. Second, the discretized VFP equation is set up as a linear

system of tensor product structure and solved using the linear solver presented in

[79]. (This is the add basis step since updating the solution increases the number of

basis elements). Third, the SVD of the updated solution is truncated accordingly to

some tolerance on the singular values. (This is the remove basis step since redundant

basis elements are truncated out). The proposed method is low-rank and maintains

structure-preserving qualities despite the SVD truncation.

1.4 Organization of the dissertation

This dissertation is organized as follows.

Chapter 2 presents the Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV)

scheme for solving convection and convection-diffusion equations. First, the necessary

technical components are reviewed. Second, the EL-RK-FV scheme is presented for

pure convection problems. Third, the EL-RK-FV scheme is presented for convection-

diffusion problems. Fourth, several numerical tests verify the convergence and robust-

ness of the scheme. Fifth, conclusions and follow-up works are discussed.

Chapter 3 presents the implicit low-rank integrators for solving diffusion equations.

First, the necessary technical components are reviewed. Second, the first- and second-

order schemes are presented. Third, numerical tests verify the convergence and com-

putational efficiency of the proposed method. Fourth, conclusions and follow-up works

are discussed.

Chapter 4 presents the low-rank tensor scheme for solving the VFP equation. First,

the necessary technical components are reviewed. Second, the discretization of the

17

VFP equation is presented. Third, the updating and truncating procedures for the

solution are presented. Fourth, numerical results verify the low-rank structure and

structure-preserving qualities of the method. Fifth, conclusions and follow-up works

are discussed.

Bibliography lists the cited references herein.

Appendix A presents an illustrative second-order example of the EL-RK-FV scheme

in Chapter 2.

Appendices B-C supplement Chapter 3. The appendices cover: (B) the second-order

scheme with Crank-Nicolson, and (C) the second-order scheme with BDF2.

Appendices D-G supplement Chapter 4. The appendices cover: (D) the nondimen-

sionalization of the VFP equation, (E) the derivation of the balance laws for the total

mass, momentum and energy of the plasma model, (F) the Stenger quadrature nodes

and weights, and (G) the quasi-Newton solver used to update the macroscopic quanti-

ties.

Appendix H presents the permissions to use the paper from which Chapter 2 is

derived and taken.

18

Chapter 2

AN EULERIAN-LAGRANGIAN RUNGE-KUTTA FINITE VOLUME
(EL-RK-FV) METHOD FOR SOLVING CONVECTION AND

CONVECTION-DIFFUSION EQUATIONS

In this chapter, we are concerned with numerically solving convection-diffusion

equations of the form
ut +∇ · F(u) = ϵ∆u+ g(x, t), x ∈ D, t > 0,

u(x, t = 0) = u0(x), x ∈ D,
(2.0.1)

where u(x, t) is the solution, F(u;x, t) is the flux function, g(x, t) is the source term,

D ⊂ Rd is the spatial domain, d ∈ N is the number of dimensions, and ϵ ≥ 0 is

the diffusion coefficient. An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-

FV) scheme utilizing weighted essentially non-oscillatory schemes with adaptive order

(WENO-AO) for spatial reconstruction for solving pure convection problems was pro-

posed by Chen, et al. [38]. Chen, et al. use the Rankine-Hugoniot jump condition to

define linear approximate characteristics that go backwards in time. By projecting and

evolving the solution back up along approximate characteristics, high-order accuracy is

achieved and very large time-stepping sizes are allowed. Extension of the EL-RK-FV

scheme to convection-diffusion problems was proposed by Nakao, et al. [133]. The

proposed method was designed for one-dimensional problems of the form (2.0.1), with

extension to higher-dimensional problems done via dimensional splitting.

This chapter is organized as follows. Section 2.1 reviews the technical material

required to understand the proposed scheme (e.g., WENO reconstruction, Runge-Kutta

methods, operator splitting, Gauss-Legendre quadrature). We then discuss the EL-RK-

FV algorithm for pure convection problems in Section 2.2. In Section 2.3, we discuss

19

the EL-RK-FV algorithm, coupled with IMEX RK schemes, for convection-diffusion

equations. Numerical performance of the EL-RK-FV algorithm is shown in Section 2.4

by applying the algorithm to several linear and nonlinear test problems. Concluding

remarks on the EL-RK-FV scheme and follow-up works are made in Section 2.5. A

majority of the content presented in Sections 2.2-2.5 is derived from [133].

2.1 Review of technical components

In this section, we review four technical components to the EL-RK-FV scheme:

high-order spatial reconstruction, high-order time-stepping, operator splitting, and

Gauss-Legendre quadrature.

2.1.1 Spatial reconstructions: WENO and WENO-AO

As discussed in Chapter 1, an Eulerian(-Lagrangian) framework allows for high-

order spatial resolution methods that approximate the solution and control spurious

oscillations. A very popular class of high-order spatial resolution methods that we use in

this scheme is the weighted essentially non-oscillatory (WENO) methods. Although we

only discuss WENO methods, other classes of high-order spatial resolution methods are

mentioned in [117, 118, 157]. The material presented in this section is predominantly

derived from [11, 43, 157].

Consider a uniform one-dimensional mesh over the interval [a, b] consisting of

Nx + 1 evenly distributed nodes (i.e., Nx cells),

a = x 1
2
< x 3

2
< ... < xNx− 1

2
< xNx+

1
2
= b.

Define the cells Ij := [xj− 1
2
, xj+ 1

2
] with centers xj = (xj− 1

2
+ xj+ 1

2
)/2 and widths

∆xj = ∆x for j = 1, ..., Nx.

The cell average of a function u(x, t) at time tn over cell Ij is denoted by

unj :=
1

∆x

∫
Ij

u(x, tn)dx. (2.1.1)

20

In finite volume methods, we assume knowledge of the cell averages of the solu-

tion u(x, t) rather than the point values. Yet, most finite volume methods still require

knowledge of the point values of the solution at the cell boundaries, u(xj± 1
2
, t), for

evaluating the flux difference. The process of approximating point values of a function

u(x, t) from its cell averages is called spatial reconstruction. The end product of the

two WENO methods presented in the following subsections is ultimately a piecewise-

polynomial that approximates u(x, t) with high-order accuracy and controls spurious

oscillations.

2.1.1.1 WENO5

We present the classic fifth-order WENO method, abbreviated WENO5 [43,

157]. A p-point stencil Sj is a set of p cells surrounding and including Ij. For example,

Ij has three 3-point stencils: {Ij−2, Ij−1, Ij}, {Ij−1, Ij, Ij+1} and {Ij, Ij+1, Ij+2}. Note

that there are p possible p−point stencils.

Theorem 2.1 (Linear Reconstruction [157]). Let uj be the cell averages of a smooth

function u(x) over a uniform grid consisting of cells Ij, j = 1, 2, ..., Nx. For each

p−point stencil Sj, there exists a p− 1 degree reconstruction polynomial Rj such

that 1
∆x

∫
Ik
Rj(x)dx = uk for all Ik ∈ Sj. Moreover, Rj(xj± 1

2
) = u(xj± 1

2
) +O(∆xp).

The outline of the proof is straightforward. The p − 1 degree reconstruction

polynomial has p unknown coefficients, and it must satisfy the cell averages of the

solution on the p cells in the stencil. The system of p equations and p unknowns can

then be solved for the coefficients of the (unique) reconstruction polynomial, and the

coefficients will be in terms of the cell averages. Taylor expanding u(xj± 1
2
) will then

give the high-order accuracy. We refer the reader to [157] for a more detailed derivation.

The idea of WENO starts with the following observation. Consider any of the

uniform cells Ij. Each of the 3-point stencils have unique third-degree reconstruction

polynomials respectively denoted by R(1)
j , R(2)

j and R(3)
j ; and the centered 5-point

stencil {Ij−2, Ij−1, Ij, Ij+1, Ij+2} has a unique fifth-degree reconstruction polynomial

21

denoted by R(5)
j . Evaluating at the cell boundary xj+ 1

2
, there exist linear weights γ1,

γ2 and γ3 such that [157]

u(xj+ 1
2
) ≈ R(5)

j (xj+ 1
2
) = γ1R(1)

j (xj+ 1
2
) + γ2R(2)

j (xj+ 1
2
) + γ3R(3)

j (xj+ 1
2
). (2.1.2)

That is, the fifth-order approximation can be expressed as a linear combination

of the three third-order approximations at the right cell boundary; this can be similarly

done at the left cell boundary. It should be noted that the evaluation at the right cell

boundary is the left limit u−
j+ 1

2

, and the evaluation at the left cell boundary is the right

limit u+
j− 1

2

. After some tedious algebra, the three third-order approximations at the

right cell boundary are

u
(1),−
j+ 1

2

=
1

3
uj−2 −

7

6
uj−1 +

11

6
uj (2.1.3a)

u
(2),−
j+ 1

2

= −1

6
uj−1 +

5

6
uj +

1

3
uj+1 (2.1.3b)

u
(3),−
j+ 1

2

=
1

3
uj +

5

6
uj+1 −

1

6
uj+2 (2.1.3c)

The three third-order approximations at the left cell boundary are

u
(1),+

j− 1
2

= −1

6
uj−2 +

5

6
uj−1 +

1

3
uj (2.1.4a)

u
(2),+

j− 1
2

=
1

3
uj−1 +

5

6
uj −

1

6
uj+1 (2.1.4b)

u
(3),+

j− 1
2

=
11

6
uj −

7

6
uj+1 +

1

3
uj+2 (2.1.4c)

The centered fifth-order approximation at the right cell boundary is

u−
j+ 1

2

=
1

30
uj−2 −

13

60
uj−1 +

47

60
uj +

9

20
uj+1 −

1

20
uj+2 (2.1.5)

The coefficients of the linear reconstruction polynomials up to seventh-order

accuracy can be found in Table 2.1 of [157]. The downside to linear reconstruction is

22

that it assumes a smooth function. In the case of non-smooth functions (e.g., Heaviside

step function), we will observe spurious oscillations, as seen in Fig. 2.1. We can resolve

this issue with WENO reconstruction, as seen in Fig. 2.1. Loosely speaking, WENO

reconstruction perturbs the linear weights γk (k = 1, 2, ..., p) for added stability and

robustness. In the spirit of equation (2.1.2), WENO also takes some special weighted

sum of lower-order reconstruction polynomials to achieve a higher-order reconstruction

polynomial.

Figure 2.1: (left) Without WENO; (right) With WENO.

We present the fifth-order WENO reconstruction below and refer the reader to

[157] for the general p−order WENO reconstruction formulas. For the purposes of

this dissertation, the fine details of WENO reconstruction are not the primary focus.

We refer the reader to [157] for a more rigorous construction of WENO methods.

Dropping the limit sign for notational ease, the equations for fifth-order WENO

(i.e., WENO5) are as follows [157]. Using the reconstructions in equation (2.1.4),

uj+ 1
2
= ω1u

(1)

j+ 1
2

+ ω2u
(2)

j+ 1
2

+ ω3u
(3)

j+ 1
2

, (2.1.6)

where

ωk =
αk∑3
s=1 αs

, k = 1, 2, 3, (2.1.7a)

23

αk =
dk

(ϵ+ βk)2
, k = 1, 2, 3, (2.1.7b)

with

d1 =
1

10
, d2 =

3

5
, d3 =

3

10
, (2.1.8a)

β1 =
13

12
(uj−2 − 2uj−1 + uj)

2 +
1

4
(uj−2 − 4uj−1 + 3uj)

2,

β2 =
13

12
(uj−1 − 2uj + uj+1)

2 +
1

4
(uj−1 − uj+1)

2,

β3 =
13

12
(uj − 2uj+1 + uj+2)

2 +
1

4
(3uj − 4uj+1 + uj+2)

2.

(2.1.8b)

ϵ > 0 is a small parameter that prevents the denominator of the smoothness indicators

βk (k = 1, 2, 3) from being zero. The parameter is often set to ϵ = 1.0e− 06 [43, 157].

Furthermore, the nonlinear weights ωk (k = 1, 2, 3) sum to one and are non-negative

for consistency and stability.

2.1.1.2 WENO-AO(5,3)

Although the classic WENO scheme presented in the previous subsection is effi-

cient, robust and high-order accurate, there are two important notes. First, equations

(2.1.4) and (2.1.6) assume a uniform grid. The WENO scheme can be generalized to

non-uniform grids, but the weights will not be the same for each cell [157]. Second,

equations (2.1.4) and (2.1.6) only hold when approximating the solution at the cell

boundaries. In fact, the linear weights are not guaranteed to exist nor be non-negative

at arbitrary points [143, 157]. If we desire approximating the solution in a WENO-

type fashion at arbitrary points within the domain, then a different WENO method is

needed. One such method is WENO with adaptive order (WENO-AO) [11].

The WENO-AO method presented in [11] is constructed in a way such that

the linear weights can exist at arbitrary points with a looser condition that the linear

weights can now be negative. The stability and robustness come from what types

of lower-order WENO methods we incorporate in our combination for a higher-order

approximation.

24

The overarching idea of WENO-AO methods is to provide high-order accuracy

for smooth solutions over a large center stencil and adaptively reduce to lower-order

accuracy when the solution does not permit the high-order accuracy. This is done

by creating a nonlinear hybridization between a large center stencil with high-order

accuracy, and very stable lower-order WENO schemes (e.g., central WENO (CWENO)

schemes [120]). Aside from the high-order accuracy and existence of linear weights at

arbitrary points, the robustness of these WENO-AO schemes is particularly attractive

for Eulerian-Lagrangian methods. The authors in [11] write WENO-AO(p, r) to denote

an adaptive order that is at best pth order (from the large center stencil) and at

worst rth order (from the stable lower order stencils). We present the formulas for

WENO-AO(5,3) below and refer the reader to [11] for more general formulas and a

rigorous derivation. We note that another similar method that derives the intuitive

underpinnings of this WENO-AO reconstruction is found in [187]. The end product of

WENO-AO methods is still a reconstruction polynomial Rj(x ∈ Ij) that we shall use

for reconstruction. The equations for WENO-AO(5,3) are as follows [11].

The authors in [11] formulate their WENO reconstruction in the Legendre basis.

The first few Legendre polynomials scaled over the domain [−1/2, 1/2] are given below.

L0(x) = 1, L1(x) = x, L2(x) = x2 − 1

12
, L3(x) = x3 − 3

20
x,

L4(x) = x4 − 3

14
x2 +

3

560
, L5(x) = x5 − 5

18
x3 +

5

336
x.

Although the WENO and WENO-AO schemes presented in this subsection are

over the domain [−1/2, 1/2], one can easily perform a linear change of variables from/to

a cell Ij to/from the interval [−1/2, 1/2]. The three very stable third-order WENO

reconstruction polynomials are as follows [11].

R(k),r3
j (x) = a

(k),r3
0 + a

(k),r3
1 L1(x) + a

(k),r3
2 L2(x), k = 1, 2, 3, (2.1.10)

25

where

a
(1),r3
0 = uj,

a
(1),r3
1 = −2uj−1 +

1

2
uj−2 +

3

2
uj,

a
(1),r3
2 =

1

2
uj−2 − uj−1 +

1

2
uj,

(2.1.11)

a
(2),r3
0 = uj,

a
(2),r3
1 =

1

2
uj+1 −

1

2
uj−1,

a
(2),r3
2 =

1

2
uj−1 − uj +

1

2
uj+1,

(2.1.12)

a
(3),r3
0 = uj,

a
(3),r3
1 = −3

2
uj + 2uj+1 −

1

2
uj+2,

a
(3),r3
2 =

1

2
uj − uj+1 +

1

2
uj+2.

(2.1.13)

The smoothness indicators for each 3-point stencil are

β(k),r3 =
(
a
(k),r3
1

)2
+

13

3

(
a
(k),r3
2

)2
, k = 1, 2, 3. (2.1.14)

The fifth-order WENO reconstruction polynomial using the center stencil is as

follows [11].

Rr5
j (x) = ar50 + ar51 L1(x) + ar52 L2(x) + ar53 L3(x) + ar54 L4(x), (2.1.15)

26

where

ar50 = uj,

ar51 = − 82

120
uj−1 +

11

120
uj−2 +

82

120
uj+1 −

11

120
uj+2,

ar52 =
40

56
uj−1 −

3

56
uj−2 −

74

56
uj +

40

56
uj+1 −

3

56
uj−2,

ar53 =
2

12
uj−1 −

1

12
uj−2 −

2

12
uj+1 +

1

12
uj+2,

ar54 = − 4

24
uj−1 +

1

24
uj−2 +

6

24
uj −

4

24
uj+1 +

1

24
uj+2.

(2.1.16)

The smoothness indicator for the center 5-point stencil is

βr5 =

(
ar51 +

1

10
ar53

)2

+
13

3

(
ar52 +

123

455
ar54

)2

+
781

20

(
ar53
)2

+
1421461

2275

(
ar54
)2
. (2.1.17)

Taking a special combination of equations (2.1.10) and (2.1.15) yields theWENO-

AO(5,3) reconstruction polynomial. When the smoothness indicators show that the

center 5-point stencil is smooth, most if not all of the reconstruction will come from

the fifth-order accurate WENO reconstruction. But, if the smoothness indicators show

that the center 5-point stencil is non-smooth, then most if not all of the reconstruc-

tion will come from the very stable, third-order accurate WENO reconstructions. This

non-linear hybridized high-order reconstruction is as follows.

Define two parameters, γHi and γLo, both less than unity. Typically, the param-

eters are set γHi ∈ [0.85, 0.95] and γLo ∈ [0.85, 0.95] [11]. The linear weights for the

center 5-point stencil and three 3-point stencils are respectively given by

γr5 = γHi, γr31 =
(1− γHi)(1− γLo)

2
, γr32 = (1− γHi)γLo, γr33 = γr31 . (2.1.18)

Note that the center 3-point stencil carries a higher linear weight than the other two

3-point stencils to help make the CWENO scheme centrally biased. Further note that

27

γr31 + γr32 + γr33 = 1− γHi. Next, we define the parameter

τ =
1

3

(∣∣βr5 − βr3
1

∣∣+ ∣∣βr5 − βr3
2

∣∣+ ∣∣βr5 − βr3
3

∣∣) . (2.1.19)

There are two choices for defining the un-normalized non-linear weights [19, 157]:

αr5 = γr5

(
1 +

τ 2

(βr5 + ϵ)2

)
, αr3

1 = γr31

1 +
τ 2(

βr3
1 + ϵ

)2
 ,

αr3
2 = γr32

1 +
τ 2(

βr3
2 + ϵ

)2
 , αr3

3 = γr33

1 +
τ 2(

βr3
3 + ϵ

)2
 ,

(2.1.20a)

αr5 =
γr5

(βr5 + ϵ)2
, αr3

1 =
γr31(

βr3
1 + ϵ

)2 ,
αr3
2 =

γr32(
βr3
2 + ϵ

)2 , αr3
3 =

γr33(
βr3
3 + ϵ

)2 , (2.1.20b)

where ϵ > 0 is small, typically ϵ = 1.0e − 12. Equation (2.1.20b) is the same as in

classic WENO5. The authors in [11] found equation (2.1.20a) to be a more stable

option, whereas equation (2.1.20b) is a more accurate option. In practice, we often use

equation (2.1.20a). The normalized non-linear weights are as follows.

ωr5 =
αr5

αr5 + αr3
1 + αr3

2 + αr3
3

, ωr3
1 =

αr3
1

αr5 + αr3
1 + αr3

2 + αr3
3

,

ωr3
2 =

αr3
2

αr5 + αr3
1 + αr3

2 + αr3
3

, ωr3
3 =

αr3
3

αr5 + αr3
1 + αr3

2 + αr3
3

.

(2.1.21)

With this comes the WENO-AO(5,3) reconstruction polynomial, for which the

linear weights exist at arbitrary points within the cell Ij (mapped to [−1/2, 1/2] by a

28

linear change of variables).

Rj(x) =
ωr5

γr5

(
Rr5

j (x)− γr31 R
(1),r3
j (x)− γr32 R

(2),r3
j (x)− γr33 R

(3),r3
j (x)

)
+ ωr3

1 R
(1),r3
j (x) + ωr3

2 R
(2),r3
j (x) + ωr3

3 R
(3),r3
j (x).

(2.1.22)

2.1.2 Time discretizations: Runge-Kutta methods

Runge-Kutta (RK) methods are commonly used to solve initial value problems

of the form 
du

dt
= L(u; t), t > 0,

u(t0) = u0.

(2.1.23)

Traditionally, RK methods are placed into one of two categories: explicit RK

methods or implicit RK methods. Discretizing in time, explicit methods evalu-

ate the right-hand side of equation (2.1.23) at the current or known times, e.g., tn.

Whereas, implicit methods evaluate the right-hand side of equation (2.1.23) at the

next or future times, e.g., tn+1. Generally speaking, explicit RK methods are more

straightforward to implement but could require very small time-stepping sizes to en-

force numerical stability. On the other hand, implicit methods are generally more

computationally expensive per time-step but allow larger time-stepping sizes in com-

parison. The method we use often boils down to the stiffness of the system and the

region of stability of the RK method. For the purposes of this dissertation, we omit

the finer theory and refer the reader to [145] for more details.

In practice, we use RK methods to solve partial differential equations ut =

L(u;x, t) after discretizing in space so that we are left with a function of u and t.

Known as themethod of lines approach, we then solve for a vector function u ∈ RNx×1

modeled by 
du

dt
= L(u; t), t > 0,

u(t0) = u0.

(2.1.24)

The simplest RK methods are forward Euler (explicit) and backward Euler

29

(implicit), respectively given by

un+1 = un +∆tL(un; tn), (2.1.25a)

un+1 = un +∆tL(un+1; tn+1). (2.1.25b)

Both forward Euler and backward Euler are first-order accurate in time, that

is, un = u(tn) +O(∆t). Note that equation (2.1.25b) requires solving a linear system;

this is why implicit methods have a higher computational complexity per time-step. Of

course, there are higher-order accurate RK methods. The rough idea to achieving high-

order accuracy in time is to approximate the solution at sequential stages within the

time interval [tn, tn+1], starting at tn and ending at tn+1; this is why RK methods are

classified as one-step, multi-stage methods. Most textbooks present a general m−stage

RK method in the following form.

un=0 = u0, (2.1.26)

un+1 = un +∆t
m∑
i=1

biKi, n ≥ 0, (2.1.27)

Ki = L

un +∆t
m∑
j=1

aijKj; t
n + ci∆t

 , i = 1, 2, ...,m, (2.1.28)

where ci =
∑m

j=1 aij for 1, 2, ...,m, and
∑m

i=1 bi = 1 for consistency. The RK method

(2.1.26) is an explicit method if aij = 0 for all j ≥ i, and is an implicit method

otherwise. It is also common practice to organize the coefficients of a RK method in a

Butcher table,

c A

bt

where A = (aij), c = [c1, ..., cm]
t and b = [b1, ..., bm]

t. For illustrative purposes, we

outline the Butcher table of the very popular explicit fourth-order RK method.

30

Explicit fourth-order Runge-Kutta method:

un+1 = un +
∆t

6
(K1 + 2K2 + 2K3 +K4), (2.1.29)

where K1 = L(un; tn), K2 = L(un + ∆t
2
K1; t

n+1/2), K3 = L(un + ∆t
2
K2; t

n+1/2) and

K4 = L(un +∆tK3; t
n+1). The Butcher table for RK method (2.1.29) is given below.

RK4

0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 1/6 1/3 1/6

2.1.2.1 Strong stability-preserving Runge-Kutta methods

We have seen how RK methods can solve time-dependent systems. However,

as partial differential equations and their solutions become more complicated, stability

becomes a pressing concern when choosing a time-stepping method. Standard linear

stability analysis [145] is sufficient for problems with smooth solutions. Whereas, a

stronger measure of stability is required when solving problems with discontinuous

solutions, such as those that arise in hyperbolic partial differential equations.

This stronger stability is as follows: assuming the forward Euler method is

strongly stable under some (semi)norm when the time-stepping size is suitably re-

stricted, we desire high-order time discretizations (e.g., Runge-Kutta methods) that

maintain strong stability under the same norm but with a possibly different time-

stepping size restriction. In other words, these so-called strong stability-preserving

(SSP) methods aim to maintain the strong stability in the same (semi)norm as the

31

forward-Euler method [77, 158, 159]. Originally, the authors in [158, 159] let the rele-

vant (semi)norm be the total variation (TV) seminorm,

TV (un) :=
∑
j

|unj+1 − unj |.

Subsection 2.1.1 discusses spatial reconstruction operators, L, that discretize

the solution in space and control spurious oscillations. We assume that the spatial dis-

cretization, when combined with the forward Euler method under some time-stepping

restriction ∆t ≤ ∆tFE (i.e., the CFL condition for forward Euler), satisfies the strong

stability property ∥∥un +∆tL(un)
∥∥ ≤∥un∥ ,

where ∥·∥ is the relevant (semi)norm. In the case where the TV seminorm is used, we

call this the TV property.

Broadly speaking, by taking a convex combination of SSP operators under the

time-stepping restriction ∆t ≤ ∆tFE, we attain a RK method that preserves the (as-

sumed) strong stability of the forward Euler method combined with spatial discretiza-

tion L(u). We refer the reader to [77] for a rigorous derivation of SSP RK methods.

For the purposes of this dissertation, we provide the Butcher tables for the optimal

explicit second- and third-order accurate SSP RK methods [77].

SSP RK2 SSP RK3

0 0 0

1 1 0

1/2 1/2

0 0 0 0

1 1 0 0

1/2 1/4 1/4 0

1/6 1/6 2/3

The class of SSP RK methods is very rich with explicit time discretizations, implicit

time discretizations and variations of these methods. Additional SSP RK methods can

be found in [44, 92].

32

2.1.2.2 Implicit-explicit Runge-Kutta methods

We can split equation (2.1.23) into its non-stiff and stiff terms,
du

dt
= F(u; t) + G(u; t), t > 0,

u(t0) = u0,

(2.1.30)

where F(u; t) is the non-stiff term and G(u; t) is the stiff term. Discretization methods

used for such problems are implicit-explicit (IMEX) RK schemes [10, 44, 92]. The

intuition behind these schemes is straightforward – evolve the non-stiff term explicitly,

and evolve the stiff term implicitly. As such, each stage in the RK method will involve

explicitly evaluating the non-stiff term, and solving a linear system due to the stiff

term. For simplicity, we only use the IMEX RK schemes outlined in [10]. As per the

notation used by Ascher, et al., IMEX(s,σ,p) denotes using an s−stage diagonally-

implicit Runge-Kutta (DIRK) scheme for G(u; t), using a σ−stage explicit RK scheme

for F(u; t), and being of combined order p. DIRK methods are a special class of implicit

RK methods and we leave their discussion to [4].

The IMEX(s,σ,p) RK schemes are expressed with two Butcher tables: one for

the implicit RK method, and another for the explicit RK method. Note that the

Butcher table for the implicit RK method is padded with zeros in the first column and

row; this is to make the dimensions consistent with the Butcher table for the explicit

RK method.

Implicit Scheme Explicit Scheme

0 0 0 0 . . . 0

c1 0 a11 0 . . . 0

c2 0 a21 a22 . . . 0
...

...
...

...
. . .

...

cs 0 as1 as2 . . . ass

0 b1 b2 . . . bs

0 0 0 0 . . . 0

c1 â21 0 0 . . . 0

c2 â31 â32 0 . . . 0
...

...
...

...
. . .

...

cs âσ1 âσ2 âσ3 . . . 0

b̂1 b̂2 b̂3 . . . b̂σ

33

More precisely, the IMEX(s,σ,p) scheme is as follows.

un+1 = un +∆t
s∑

µ=1

bµKµ +∆t
σ∑

µ=1

b̂µK̂µ, (2.1.31a)

Kµ = G(u(µ); t(µ)), µ = 1, 2, ..., s, (2.1.31b)

K̂1 = F(un; tn), (2.1.31c)

K̂µ+1 = F(u(µ); t(µ)), µ = 1, 2, ..., s. (2.1.31d)

Based on the IMEX RK method, the solution u(µ) can be approximated by

u(µ) = un +∆t

µ∑
ν=1

aµ,νKν +∆t

µ∑
ν=1

âµ+1,νK̂ν , µ = 1, 2, ..., s. (2.1.32)

Note that each stage of an IMEX RK method will require solving a linear system since

Kµ is at time t(µ). We provide the Butcher tables for several IMEX RK methods pre-

sented in [10]. By construction, each IMEX RK scheme has slightly different properties

that are better suited for different problems. Some schemes might have better damp-

ing properties and stability regions, be stiffly-accurate, etc. Further details and other

IMEX RK methods, including IMEX SSP RK methods, can be found in [10, 44, 92].

IMEX(1,1,1) – Implicit Table IMEX(1,1,1) – Explicit Table

0 0 0

1 0 1

0 1

0 0 0

1 1 0

1 0

IMEX(1,2,2) – Implicit Table IMEX(1,2,2) – Explicit Table

0 0 0

1/2 0 1/2

0 1

0 0 0

1/2 1/2 0

0 1

34

IMEX(2,2,2) – Implicit Table IMEX(2,2,2) – Explicit Table

0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

δ 1− δ 0

IMEX(2,2,2) Let γ = 1−
√
2/2 and δ = 1− 1/(2γ).

IMEX(2,3,3) – Implicit Table IMEX(2,3,3) – Explicit Table

0 0 0 0

γ 0 γ 0

1− γ 0 1− 2γ γ

0 1/2 1/2

0 0 0 0

γ γ 0 0

1− γ γ − 1 2(1− γ) 0

0 1/2 1/2

IMEX(2,3,3) Let γ = (3 +
√
3)/6.

IMEX(2,3,2) – Implicit Table IMEX(2,3,2) – Explicit Table

0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

0 1− γ γ

IMEX(2,3,2) Let γ = (2−
√
2)/2 and δ = −2

√
2/3.

IMEX(3,4,3) – Implicit Table IMEX(3,4,3) – Explicit Table

0 0 0 0 0

γ 0 γ 0 0

0.717933 0 0.282067 γ 0

1 0 1.208497 -0.644363 γ

0 1.208497 -0.644363 γ

0 0 0 0 0

γ γ 0 0 0

0.717933 0.321279 0.396654 0 0

1 -0.105858 0.552929 0.552929 0

0 1.208497 -0.644363 γ

IMEX(3,4,3) Let γ = 0.435867.

35

IMEX(4,4,3) – Implicit Table IMEX(4,4,3) – Explicit Table

0 0 0 0 0 0

1/2 0 1/2 0 0 0

2/3 0 1/6 1/2 0 0

1/2 0 -1/2 1/2 1/2 0

1 0 3/2 -3/2 1/2 1/2

0 3/2 -3/2 1/2 1/2

0 0 0 0 0 0

1/2 1/2 0 0 0 0

2/3 11/18 1/18 0 0 0

1/2 5/6 -5/6 1/2 0 0

1 1/4 7/4 3/4 -7/4 0

1/4 7/4 3/4 -7/4 0

2.1.3 Operator splitting

When numerically solving equation (2.1.23) it is sometimes easier to decompose

the differential operator L into a sum of simpler sub-operators and solve a sequence of

simpler problems. Of course, this assumes that L can be decomposed in this manner.

Consider the case of splitting L into the sum of two sub-operators L1 and L2. Equation

(2.1.23) is rewritten as 
du

dt
= L1(u; t) + L2(u; t), t > 0,

u(t0) = u0.

(2.1.33)

Dimensional splitting methods solve equation (2.1.33), and hence equation (2.1.23),

by alternating between solving the easier problems

du

dt
= L1(u; t), (2.1.34a)

du

dt
= L2(u; t). (2.1.34b)

For example, we might solve equation (2.1.34a) over an entire time-step ∆t to

get the intermediate solution u∗; and then use u∗ as the initial condition when solving

equation (2.1.34b) over an entire time-step ∆t to get the updated solution un+1. Notice

that we will have updated the solution with respect to each differential sub-operator for

an entire time-step ∆t. In this sense, we have reduced the problem to only dealing with

36

one sub-operator at a time. The example we just described is known as Lie-Trotter

splitting, and this is a first-order splitting method since it introduces a temporal error

O(∆t).

In this subsection, we present a few common splitting methods up to high-

order accuracy. We only deal with the two sub-operator case L = L1 + L2, but the

extension to three or more sub-operators follows naturally. It should be noted that

the more sub-operators you have, the greater the computational complexity, especially

with higher-order splitting methods. For the sake of keeping this subsection focused on

the implementation, we refer the reader to [119, 130] for details concerning the order

of accuracy.

2.1.3.1 First-order Lie-Trotter splitting

� Step 1 (L1 sub-operator).

Solve equation (2.1.34a) over a time-step ∆t; that is, over [tn, tn+1].

un −→ u∗.

� Step 2 (L2 sub-operator).

Solve equation (2.1.34b) over a time-step ∆t; that is, over [tn, tn+1].

u∗ −→ un+1.

2.1.3.2 Second-order Strang splitting

� Step 1 (L1 sub-operator).

Solve equation (2.1.34a) over a time-step ∆t/2; that is, over [tn, tn+1/2].

un −→ u∗.

� Step 2 (L2 sub-operator).

Solve equation (2.1.34b) over a time-step ∆t; that is, over [tn, tn+1].

u∗ −→ u∗∗.

� Step 3 (L1 sub-operator).

37

Solve equation (2.1.34a) over a time-step ∆t/2; that is, over [tn+1/2, tn+1].

u∗∗ −→ un+1.

2.1.3.3 Higher-order splitting

As seen with Strang splitting, higher-order splitting methods require several

more steps alternating between solving equations (2.1.34a) and (2.1.34b). This is one

downside to higher-order splitting methods. However, for the case of L = L1 +L2, the

computational cost of the splitting is usually reasonable. We only present a fourth-

order splitting method [73, 182], but other high-order splitting methods can be found

in [35, 73, 182]. It is important to note that splitting methods of order three or more

must have at least one negative time-step [74]. When L is a spatial differential operator

that contains a diffusive term, it is well-known that negative time integration leads to

significant instabilities. In this case, we are limited to at best second-order Strang

splitting.

Define two constants

γ1 =
1

2− 21/3
≈ 1.351207191959658 and γ2 =

−21/3

2− 21/3
≈ −1.702414383919315.

� Step 1 (L1 sub-operator).

Solve equation (2.1.34a) over a time-step γ1∆t/2.

� Step 2 (L2 sub-operator).

Solve equation (2.1.34b) over a time-step γ1∆t.

� Step 3 (L1 sub-operator).

Solve equation (2.1.34a) over a time-step (γ1 + γ2)∆t/2.

� Step 4 (L2 sub-operator).

Solve equation (2.1.34b) over a time-step γ2∆t.

� Step 5 (L1 sub-operator).

Solve equation (2.1.34a) over a time-step (γ1 + γ2)∆t/2.

38

� Step 6 (L2 sub-operator).

Solve equation (2.1.34b) over a time-step γ1∆t.

� Step 7 (L1 sub-operator).

Solve equation (2.1.34a) over a time-step γ1∆t/2.

Note that steps 2 and 6 require steps larger than ∆t, and steps 3, 4, and 5 require

steps backwards in time.

2.1.4 Gauss-Legendre quadrature

Quadratures are a class of methods that explicitly approximate definite inte-

grals. Common quadratures for functions of a single variable include Gauss-Legendre

quadrature over finite intervals [a, b], Gauss-Laguerre quadrature over unbounded in-

tervals [0,+∞), and Gauss-Hermite quadrature over unbounded intervals (−∞,+∞).

There exist several different quadrature methods, each with their own advantages

[60, 101, 145, 147, 171]. We only present the Gauss-Legendre quadrature formula

and refer the reader to [101, 145, 147] for derivations and more details.

Considering the domain [−1, 1], we desire an approximation to the definite inte-

gral
∫ 1

−1
f(x)dx. Broadly speaking, the Gauss-Legendre quadrature approximates the

integral
∫ 1

−1
f(x)dx with

n∑
k=1

wkf(xk), (2.1.35)

where the quadrature nodes {xk : k = 1, 2, ..., n} are the roots of the Legendre

polynomial Ln(x) ∈ Pn, and the quadrature weights are

wk =
2

(1− xk)2
(
L′
n(xk)

)2 , k = 1, 2, ..., n. (2.1.36)

We assume that the Legendre polynomials are normalized over the interval

[−1, 1] so that Ln(1) = 1 for all n ≥ 1. The Legendre polynomials are defined by

the formula

Ln(x) =
1

2nn!

dn

dxn
(x2 − 1)n, (2.1.37)

39

which can be easily proved by induction. We note that the Legendre polynomials are

orthogonal with respect to the L2 inner product with ∥Ln∥22 = 2/(2n+ 1).

One can easily approximate an integral over a general bounded interval
∫ b

a
f(x)dx

by using quadrature formula (2.1.35) under the linear mapping ϕ : [a, b]→ [−1, 1]. Or,

one could extend this idea to construct a composite quadrature. The n-point Gauss-

Legendre composite quadrature (2.1.35) has 2n-order of accuracy. In other words, if the

interval [a, b] is partitioned into M uniform and disjoint sub-intervals [a, b] = ∪Mm=1Im

each of width h = (b− a)/M , then∣∣∣∣∣∣
∫ b

a

f(x)dx−
M∑

m=1

Gm

∣∣∣∣∣∣ = O(h2n),
where n is the number of quadrature nodes/weights and Gm is the n-point Gauss-

Legendre quadrature (2.1.35) of sub-interval Im. Table 2.1 presents the Gauss-Legendre

quadrature nodes and weights over the interval [−1, 1].

Table 2.1: Nodes and weights for the order-n Gauss-Legendre quadrature over [−1, 1].
Number of nodes, n Nodes, xk Weights, wk

2 ± 1√
3

1

3
0 8/9

±
√

3
5

5/9

4
±0.339981043584856 0.652145154862546
±0.861136311594053 0.347854845137454

5
0 0.568888888888889

±0.538469310105683 0.478628670499366
±0.906179845938664 0.236926885056189

6
±0.238619186083197 0.4679139345726910
±0.661209386466265 0.360761573048139
±0.932469514203152 0.171324492379170

40

2.2 The EL-RK-FV method for pure convection problems

The spirit of the EL-RK-FV method is best demonstrated by starting with

a pure convection problem in one dimension, i.e., equation (2.0.1) with ϵ = 0 and

g(x) = 0. Let the flux be denoted f(x). We first discuss the formulation of the

scheme in Section 2.2.1, followed by discussion of high-order spatial reconstruction in

Section 2.2.2 and time discretization in Section 2.2.3.

2.2.1 Scheme formulation

We discretize the spatial domain [a, b] into Nx intervals with Nx + 1 uniformly

distributed nodes

a = x 1
2
< x 3

2
< ... < xNx− 1

2
< xNx+

1
2
= b.

Define the cells Ij := [xj− 1
2
, xj+ 1

2
] with centers xj = (xj− 1

2
+xj+ 1

2
)/2 and widths

∆xj = ∆x for j = 1, ..., Nx. We let

∆t =
CFL∆x

max|f ′(u)|
, (2.2.1)

where CFL defines the time stepping size. In contrast to Eulerian methods, which

evolve the solution on a stationary mesh, our EL algorithm proposes tracing the char-

acteristics backwards in time from tn+1 to tn to partition a set of space-time regions

based on the computational grid. Since tracing characteristics in the nonlinear case

is often nontrivial, we consider computing approximations of characteristics that are

linear space-time curves. In particular, the approximate characteristic speeds at nodes

xj+ 1
2
and time tn+1 are defined using the Rankine-Hugoniot jump condition at time tn,

νj+ 1
2
=


f(unj+1)− f(unj)

unj+1 − unj
, unj+1 ̸= unj ,

f ′(unj), unj+1 = unj ,

(2.2.2)

where unj and unj+1 are the cell averages at time tn. In practice we tested if |unj+1−unj | <

ϵ, with ϵ = 1.0e− 8, in which case we took u to be the average of unj and unj+1. As seen

41

in Figure 2.2, the (upstream) traceback nodes can be defined by

x∗
j+ 1

2

:= xj+ 1
2
− νj+ 1

2
∆t, j = 1, ..., N. (2.2.3)

Further define x̃j+ 1
2
(t) = x∗

j+ 1
2

+ νj+ 1
2
(t − tn) with tn ≤ t ≤ tn+1, for j =

0, 1, 2, ..., N . The approximate characteristics are given by the space-time tracelines

Sleft := {(x̃j− 1
2
(t), t) : tn ≤ t ≤ tn+1} and Sright := {(x̃j+ 1

2
(t), t) : tn ≤ t ≤ tn+1}.

Note that x∗
j+ 1

2

= x̃j+ 1
2
(tn), xj+ 1

2
= x̃j+ 1

2
(tn+1), and the (upstream) traceback

cells I∗j = Ĩj(t
n) are in general nonuniform. We define the space-time domain Ωj as

the region bounded by Ij, I
∗
j , Sleft, and Sright, as seen in Figure 2.2.

Figure 2.2: The space-time region Ωj.

With the constructed space-time region Ωj, we rewrite the one-dimensional pure

convection problem in divergence form ∇t,x · (u, f(u))T = 0, integrate it over Ωj, and

42

apply the divergence theorem to get

∫
Ij

u(x, tn+1)dx−
∫
I∗j

u(x, tn)dx =−

[∫ tn+1

tn

(
f(u(x̃j+ 1

2
(t), t))− νj+ 1

2
u(x̃j+ 1

2
(t), t)

)
dt

−
∫ tn+1

tn

(
f(u(x̃j− 1

2
(t), t))− νj− 1

2
u(x̃j− 1

2
(t), t)

)
dt

]
.

(2.2.4)

We rewrite the time-integral form (2.2.4) into the time-differential form to get

d

dt

∫
Ĩj(t)

u(x, t)dx = −
[
Fj+ 1

2
(t)− Fj− 1

2
(t)
]
, (2.2.5)

where Fj+ 1
2
(t) := f(u(x̃j+ 1

2
(t), t))−νj+ 1

2
u(x̃j+ 1

2
(t), t) is called themodified flux function.

Choosing any appropriate monotone numerical flux function

F̂j+ 1
2
(t) = F̂j+ 1

2
(u−

j+ 1
2

, u+
j+ 1

2

; t) (2.2.6)

(e.g., Lax-Friedrichs flux) for the modified flux function, equation (2.2.5) can be rewrit-

ten as the following semi-discrete finite volume scheme:

d

dt

∫
Ĩj(t)

u(x, t)dx = −
[
F̂j+ 1

2
(t)− F̂j− 1

2
(t)
]
. (2.2.7)

Here, the starting condition is obtained by a solution remapping onto a trace-

back grid, discussed in Section 2.2.2; F̂j+ 1
2
(t) are computed from (2.2.6) with recon-

structed values from neighboring cell averages at time t, discussed in Section 2.2.3. We

evolve equation (2.2.7) by the MOL approach with explicit RK schemes, discussed in

Section 2.2.4.

2.2.2 Solution remapping onto a traceback grid

Referring back to Figure 2.2 and equation (2.2.4), we see that the solution will

need to be projected onto the traceback grid in order to compute the traceback cell

43

averages

ũnj :=
1

∆x∗j

∫
I∗j

u(x, tn)dx, j = 1, 2, ..., N, (2.2.8)

that is, the starting condition for (2.2.7). Hence, we desire a procedure for an integral

reconstruction that in general uses known uniform cell averages {uj(t) : j = 1, 2, ..., N}

to approximate the desired cell averages {ũj(t) : j = 1, 2, ..., N} defined by

ũj(t) :=
1

∆x̃j(t)

∫
Ĩj(t)

u(x, t)dx, j = 1, 2, ..., N. (2.2.9)

Unless otherwise stated, overlines (e.g., uj(t)) denote uniform cell averages, and tildes

(e.g., ũj(t)) denote nonuniform cell averages.

Since discontinuities and sharp gradients can occur when solving pure convection

problems, we use high-resolution schemes to control spurious oscillations, e.g., weighted

essential non-oscillatory (WENO) methods [11, 43, 120, 157]. Again, we assume to

only be given the uniform cell averages at some time t. One might apply the well

knownWENO procedure presented in [43, 157] to obtain the reconstruction polynomials

Rj(x ∈ Ij) in terms of the neighboring uniform cell averages (at time t) ui, i =

j − p, ..., j + q. Referring to Figure 2.2 for the sake of demonstration, we might then

approximate the cell averages ũ∗j by

ũ∗j ≈
1

∆x∗j

(∫
I∗j ∩Ij−1

Rj−1(x)dx+

∫
I∗j ∩Ij

Rj(x)dx

)
. (2.2.10)

However, the linear weights in the WENO reconstruction are not guaranteed

to exist or be positive at arbitrary points. To alleviate this issue, we instead use the

WENO schemes with adaptive order (WENO-AO) presented in [11] since the linear

weights exist at arbitrary points.

The overarching idea of WENO-AO methods is to provide high order accuracy

for smooth solutions over a large center stencil and adaptively reduce to lower order

accuracy when the solution does not permit the high order accuracy. This is done

44

by creating a nonlinear hybridization between a large center stencil with high order

accuracy, and very stable lower order WENO schemes (e.g., CWENO schemes [120]).

Aside from the high order accuracy and existence of linear weights at arbitrary points,

the robustness of these WENO-AO schemes is particularly attractive for our purposes.

The authors in [11] write WENO-AO(p, r) to denote an adaptive order that is at best

pth order (from the large center stencil) and at worst rth order (from the stable lower

order stencils). For our purposes we use WENO-AO(5,3). The end product of WENO

and WENO-AO methods is ultimately a reconstruction polynomial Rj(x ∈ Ij) that we

shall use for reconstruction.

Equation (2.2.10) is valid when using WENO-AO reconstruction polynomials

Rj(x ∈ Ij). Let Iℓ and Ir denote the uniform cells that the left and right traceback

points x̃j− 1
2
(t) and x̃j+ 1

2
(t) reside in, respectively. Here, subscripts ℓ and r denote the

indices of their respective uniform cells. Then

∫
Ĩj(t)

u(x, t)dx ≈
∫
Ĩj(t)∩Iℓ

Rℓ(x)dx+∆x
r−1∑

i=ℓ+1

ui(t) +

∫
Ĩj(t)∩Ir

Rr(x)dx. (2.2.11)

We summarize the integral reconstruction procedure using WENO-AO below.

Algorithm 2.1. Integral reconstruction using WENO-AO

Input: uniform cell averages uj(t) on the background grid of nodes xj+ 1
2
.

Output: possibly nonuniform cell averages ũj(t) on the traceback grid of nodes

x̃j+ 1
2
(t).

do j = 1, 2, ..., N

Locate the uniform background cells that x̃j− 1
2
(t) and x̃j+ 1

2
(t) reside in.

Call these cells Iℓ and Ir, respectively.

if ℓ = r

Compute ũj(t) ≈
1

∆x̃j(t)

∫
Ĩj(t)

Rℓ(x)dx.

else

45

do k = ℓ, r

Compute

∫
Ĩj(t)∩Ik

Rk(x)dx.

end do

Compute ũj(t) ≈
1

∆x̃j(t)

∫
Ĩj(t)∩Iℓ

Rℓ(x)dx+∆x
r−1∑

i=ℓ+1

ui(t) +

∫
Ĩj(t)∩Ir

Rr(x)dx

.

end if

end do

2.2.3 Reconstruction of point values

Referring back to Figure 2.2 and equations (2.2.4)-(2.2.7), we also need to re-

construct the point values u(x̃−
j+ 1

2

(t), t) and u(x̃+
j+ 1

2

(t), t) for the modified flux function.

However, the WENO-AO schemes in [11] assume a uniform grid for convenience and

efficiency. We wish to avoid using nonuniform WENO methods since the linear weights

need to be recomputed every step and will quickly become expensive. However, nonuni-

form WENO methods for two-dimensional problems [12, 184, 185, 186, 188] might be-

come a more reasonable and realistic choice when dealing with non-splitting algorithms.

Yet, we still need to reconstruct the left and right limits on the generally nonuniform

traceback grid. We propose using the continuous piecewise-linear transformation from

the nonuniform grid consisting of nodes x̃j+ 1
2
(t) to the uniform background grid; per-

forming a WENO-AO reconstruction on the uniform grid; and mapping back to the

nonuniform grid to obtain the desired limits. We call this the nonuniform-to-uniform

transformation. Given a fixed t ∈ [tn, tn+1], consider the linear bijection ϕj : Ĩj(t)→ Ij

for j = 1, 2, ..., N . Letting x ∈ Ĩj(t) and ξ ∈ Ij,∫
Ĩj(t)

u(x, t)dx = |J |
∫
Ij

u(x(ξ), t)dξ, (2.2.12)

46

where |J |(ξ) = |dx/dξ|(ξ) is the Jacobian of the bijection ϕj. In particular, the Jacobian

is constant for the linear interpolant,

|J | =

∣∣∣∣∣∣ ddξ
(
∆x̃j(t)

∆x
ξ −

xj+ 1
2
x̃j− 1

2
(t) + xj− 1

2
x̃j+ 1

2
(t)

∆x

)∣∣∣∣∣∣ = ∆x̃j(t)

∆x
. (2.2.13)

Since we want to apply WENO-AO over the uniform grid, we define the auxiliary

uniform cell averages as

ǔj(t) :=
1

∆x

∫
Ij

u(x(ξ), t)dξ =
1

∆x|J |

∫
Ĩj(t)

u(x, t)dx =
1

∆x̃j(t)

∫
Ĩj(t)

u(x, t)dx = ũj(t).

(2.2.14)

Note that we have shown the auxiliary uniform cell averages (on the uniform

background grid) are identical to the nonuniform cell averages. Hence, under this

continuous piecewise-linear mapping, we can directly use the nonuniform cell aver-

ages at time t in the (uniform) WENO-AO procedure to obtain the left and right

limits u(x̃−
j+ 1

2

(t), t) and u(x̃+
j+ 1

2

(t), t). We further note that the high-order accuracy is

preserved with such a strategy only when there is a smooth mapping with equation

(2.2.12). Theoretical justification for the existence of such a mapping is highly non-

trivial. Yet, our numerical tests verify that high-order spatial accuracy is still achieved

under this continuous, piecewise linear, C0 mapping so long as the (approximate) char-

acteristic field that controls the traceback grid is smooth. We found that the accuracy

drops to first or second order when the (approximate) characteristic field that con-

trols the traceback grid is not smooth (e.g., a fixed traceback grid with alternating cell

lengths 4
3
∆x : 2

3
∆x or 9

5
∆x : 1

5
∆x). However, since the traceback grid is determined

by the smooth velocity field via the Rankine-Hugoniot jump condition, the high-order

accuracy is still observed.

Algorithm 2.2. Reconstruction using WENO-AO with the nonuniform-to-uniform

transformation

47

Input: nonuniform cell averages ũj(t) on the traceback grid.

Output: left and right limits u(x̃−
j+ 1

2

(t), t) and u(x̃+
j+ 1

2

(t), t).

do j = 1, 2, ..., N

Calculate the (uniform) WENO-AO reconstruction polynomial Rj(x ∈ Ij) in

terms of the neighboring auxiliary uniform cell averages ǔi(t) = ũi(t),

i = j − p, ..., j + q.

Compute the left limit u(x̃−
j+ 1

2

(t), t) ≈ Rj(xj+ 1
2
).

Compute the right limit u(x̃+
j− 1

2

(t), t) ≈ Rj(xj− 1
2
).

end do

2.2.4 Time evolution with explicit Runge-Kutta methods

Algorithms 2.1 and 2.2 now allow us to perform (integral) reconstruction on a

traceback grid consisting of nodes x̃j+ 1
2
(t). With these two tools we can evolve equation

(2.2.7) using any explicit RK method. Recall that our primary goal is to achieve high

order accuracy while also taking large time steps. In our numerical tests we use WENO-

AO(5,3) for the spatial approximation, although higher order WENO-AO methods can

certainly be used. As such, we would like to use high-order time stepping methods. In

the cases where the solution is smooth, the standard fourth-order RK method suffices.

However, if the solution is discontinuous (e.g., a travelling Heaviside step function),

then we require an explicit SSP RK method [77]. As mentioned in Section 2.1.2.1,

explicit SSP RK methods are especially attractive when numerically solving hyperbolic

conservation laws because they maintain strong stability while also achieving high order

accuracy in time. When applicable, we use the optimal three-stage, third-order explicit

48

SSP RK method outlined below for demonstration purposes:

∆x̃
(0)
j ũ

(0)
j = ∆x∗ju

∗
j ,

∆x̃
(1)
j ũ

(1)
j = ∆x̃

(0)
j ũ

(0)
j −∆t

(
F̂

(0)

j+ 1
2

(u−, u+; tn)− F̂ (0)

j− 1
2

(u−, u+; tn)
)
,

∆x̃
(2)
j ũ

(2)
j = ∆x̃

(0)
j ũ

(0)
j −

∆t

4

[(
F̂

(0)

j+ 1
2

(u−, u+; tn)− F̂ (0)

j− 1
2

(u−, u+; tn)
)

+
(
F̂

(1)

j+ 1
2

(u−, u+; tn+1)− F̂ (1)

j− 1
2

(u−, u+; tn+1)
)]
,

∆xju
n+1
j = ∆x̃

(0)
j ũ

(0)
j −

2∆t

3

(
F̂

(2)

j+ 1
2

(u−, u+; tn+
1
2)− F̂ (2)

j− 1
2

(u−, u+; tn+
1
2)
)

− ∆t

6

[(
F̂

(0)

j+ 1
2

(u−, u+; tn)− F̂ (0)

j− 1
2

(u−, u+; tn)
)

+
(
F̂

(1)

j+ 1
2

(u−, u+; tn+1)− F̂ (1)

j− 1
2

(u−, u+; tn+1)
)]
,

(2.2.15)

where ∆x̃
(k)
j = x̃j+ 1

2
(t(k))−x̃j− 1

2
(t(k)) denotes the cell lengths at stage k, F̂

(k)

j± 1
2

(u−, u+; t)

denotes using the cell averages ũ
(k)
j from stage k to approximate the limits u−

j± 1
2

and

u+
j± 1

2

in the numerical flux function at time t using Algorithms 2.1 and 2.2.

Remark 2.1. If the approximate characteristics are defined such that νj+ 1
2
= 0 for all

j, then the EL-RK-FV scheme reduces to the standard RK-FV scheme [157]. Referring

to Figure 2.2, the approximate characteristics would be vertical lines.

Remark 2.2. In the presence of shocks, the approximate characteristics will inter-

sect even under reasonable time-stepping sizes. The proposed EL-RK-FV scheme can

handle shocks only under very small time-stepping sizes, making the scheme not ideal

when going to large times after shock formation. The EL-RK-FV scheme is modified

and extended to allow large time-stepping sizes in the presence of shocks in [40, 180].

In particular, it is proved that the first-order version of the modified scheme with for-

ward Euler time discretization is total-variation-diminishing and maximum-principle-

preserving under a time-stepping size at least twice as large as the CFL constraint for

an Eulerian first-order finite volume method [180]. The method is extended to high-

order accuracy with WENO type spatial reconstruction and RK time discretization in

[40].

49

Remark 2.3. Once the space-time partition is defined, the EL-RK-FV scheme evolves

from time tn to time tn+1 in a similar fashion to ALE methods. In the ALE mindset,

one can imagine that νj+ 1
2
= 0 fixes the grid point over this time interval (Eulerian),

and νj+ 1
2
̸= 0 moves the grid point according to the approximate characteristic speed

(Lagrangian). In this sense, the EL-RK-FV and ALE frameworks achieve the same

goal, that is, if the grid speed is chosen to be the characteristic speed. However, the

goal of ALE methods is to move the grid to better resolve sharp gradients. Whereas, the

EL-RK-FV method is designed to approximate the characteristics with the goal of large

time-stepping sizes. By tracing backwards in time and working on a fixed background

mesh, the EL-RK-FV method allows very large time-stepping sizes without the need

to evolve the mesh.

2.2.5 Two-dimensional problems

We now consider the two-dimensional equation

ut + f(u)x + g(u)y = 0. (2.2.16)

The spatial domain is discretized into NxNy cells, Ii,j := Ii × Ij with centers xi,j =

((xi− 1
2
+ xi+ 1

2
)/2, (yj− 1

2
+ yj+ 1

2
)/2), where the spatial discretizations in x and y are

respectively given by

0 = x 1
2
< x 3

2
< ... < xNx− 1

2
< xNx+

1
2
= 2π

and

0 = y 1
2
< y 3

2
< ... < yNy− 1

2
< yNy+

1
2
= 2π.

The CFL number is defined as

∆t =
CFL

max |f ′(u)|
∆x

+
max |g′(u)|

∆y

, (2.2.17)

50

and the uniform cell averages at time tn are defined by

˜̄uni,j :=
1

∆x∆y

∫
Ii,j

u(x, y, tn)dxdy. (2.2.18)

In the two-dimensional case, we also want to compute the interval averages over

the interval Ii at a fixed y, or over the interval Ij at a fixed x. Define the uniform

interval averages at time tn with one variable fixed by

ūni|y :=
1

∆x

∫
Ii

u(x, y, tn)dx, (2.2.19a)

ũnj|x :=
1

∆y

∫
Ij

u(x, y, tn)dy. (2.2.19b)

Note that only in this subsection will the superscript tilde denote uniform interval

averages in y, not nonuniform interval averages.

As discussed in Section 2.1.3, dimensional splitting methods are commonly used

to solve two (or higher) dimensional problems. In the current setting, splitting methods

solve equation (2.2.16) by alternating between solving the easier problems

ut + f(u)x = 0, (2.2.20a)

ut + g(u)y = 0. (2.2.20b)

Strang splitting uses ˜̄uni,j to solve (2.2.20a) over a half time step ∆t/2 for inter-

mediate solution ˜̄u∗i,j; uses ˜̄u
∗
i,j to solve (2.2.20b) over a full time step ∆t for intermediate

solution ˜̄u∗∗i,j; and uses ˜̄u∗∗i,j to solve (2.2.20a) over another half time step ∆t/2 for so-

lution ˜̄un+1
i,j . As such, we can reduce the two-dimensional problem to solving several

(easier) one-dimensional problems. Since the one-dimensional EL-RK-FV algorithm

evolves interval averages, we need a way to go between two-dimensional cell averages

and one-dimensional interval averages. We note that the nonlinear weights in the

WENO-AO method [11] are the same for all nodes within the same cell.

51

2.2.5.1 Going from/to cell averages to/from interval averages

Consider the interval averages as functions of y and x, respectively defined by

ψi(y) := ūni|y =
1

∆x

∫
Ii

u(x, y, tn)dx, (2.2.21a)

ϕj(x) := ũnj|x =
1

∆y

∫
Ij

u(x, y, tn)dy. (2.2.21b)

For any given i = 1, 2, ..., Nx or j = 1, 2, ..., Ny, consider the respective Gauss-Legendre

quadrature nodes {x(i)k ∈ Ii : k = 1, ..., K} and {y(j)l ∈ Ij : l = 1, ..., L}. Observing

that the cell averages at time tn can be expressed as the interval averages of ψ(y) and

ϕ(x),

˜̄uni,j =
1

∆y

∫
Ij

ψi(y)dy =
1

∆x

∫
Ii

ϕj(x)dx, (2.2.22)

we can use WENO-AO to go from cell averages to interval averages evaluated at the

Gauss-Legendre nodes,

˜̄uni,j −→ ψi(y
(j)
l) = ūni|l, (2.2.23a)

˜̄uni,j −→ ϕj(x
(i)
k) = ũnj|k. (2.2.23b)

Algorithm 2.3 presents how to implement WENO-AO to go from cell averages

to x−interval averages at the fixed y−Gauss-Legendre nodes. A similar algorithm can

be done to go from cell averages to y−interval averages at the fixed x−Gauss-Legendre

nodes.

Algorithm 2.3. Going from cell averages to x−interval averages

Input: uniform cell averages ˜̄ui,j.

Output: uniform x−interval averages ūi|l at fixed Gauss-Legendre nodes {y(j)l ∈

Ij : l = 1, ..., L}.

do i = 1, 2, ..., Nx

do j = 1, 2, ..., Ny

52

Calculate the WENO-AO reconstruction polynomial R(i)
j (y ∈ Ij) in terms

of the neighboring averages ˜̄ui,k, k = j − p, ..., j + q.

do l = 1, ..., L

Store ūi|l = ψi(y
(j)
l) ≈ R(i)

j (y
(j)
l).

end do

end do

end do

The uniform x−interval averages at a fixed Gauss-Legendre node y
(j)
l are

{ūi|l = ψi(y
(j)
l) : l = 1, 2, ..., Nx}.

Computing the cell averages from the interval averages at the Gauss-Legendre

nodes is straightforward using a Gaussian quadrature. Let ξ and w denote the standard

Gauss-Legendre nodes and weights over the interval [−1, 1], respectively. Without loss

of generality, we can go from x−interval averages to cell averages via

˜̄ui,j =
1

∆y

∫
Ij

ψ(y)dy

=
1

2

∫ 1

−1

ψ
(
yj− 1

2
+

∆y

2
(y′ + 1)

)
dy′

≈ 1

2

L∑
l=1

wlψ
(
yj− 1

2
+

∆y

2
(ξl + 1)

)
=

1

2

L∑
l=1

wlψ(y
(j)
l), where y

(j)
l = yj− 1

2
+

∆y

2
(ξl + 1).

(2.2.24)

2.2.5.2 A demonstration with Strang splitting

For demonstrative purposes, we outline the EL-RK-FV algorithm for two-dimensional

problems via Strang splitting. Since Strang splitting is only second-order in time,

higher-order splitting methods might be preferred. The fourth-order splitting method

in Section 2.1.3 developed by Forest and Ruth [73] and Yoshida [182] follows similarly.

Rossmanith and Seal used this fourth-order splitting method in the semi-Lagrangian

53

framework in [151].

Algorithm 2.4. Strang splitting for the EL-RK-FV method

Input: uniform cell averages ˜̄uni,j.

Output: uniform cell averages ˜̄un+1
i,j .

Step 1 (x-direction).

Solve equation (2.2.20a) for a half time step ∆t/2; that is, over [tn, tn+1/2].

Use Algorithm 2.3 to get x−interval averages; that is, ˜̄uni,j −→ ūni|l.

do l = 1, 2, ..., Ny · L

For each Gauss-Legendre node, update the x−interval averages by applying

the 1D algorithm, that is, ūni|l −→ ū∗i|l.

end do

Use equation (2.2.24) to get updated cell averages; that is, ū∗i|l −→ ˜̄u∗i,j.

Step 2 (y-direction).

Solve equation (2.2.20b) for a full time step ∆t, that is, over [tn, tn+1].

Use Algorithm 2.3 analogue to get y−interval averages, that is, ˜̄u∗i,j −→ ũ∗j|k.

do k = 1, 2, ..., Nx ·K

For each Gauss-Legendre node, update the y−interval averages by applying

the 1D algorithm, that is, ũ∗j|k −→ ũ∗∗j|k.

end do

Use equation (2.2.24) analogue to get updated cell averages, that is, ũ∗∗j|k −→ ˜̄u∗∗i,j.

Step 3 (x-direction).

Solve equation (2.2.20a) for a half time step ∆t/2, that is, over [tn+1/2, tn+1].

Use Algorithm 2.3 to get x−interval averages, that is, ˜̄u∗∗i,j −→ ū∗∗i|l .

do l = 1, 2, ..., Ny · L

54

For each Gauss-Legendre node, update the x−interval averages by applying

the 1D algorithm, that is, ū∗∗i|l −→ ūn+1
i|l .

end do

Use equation (2.2.24) to get updated cell averages; that is, ūn+1
i|l −→ ˜̄un+1

i,j .

2.3 The EL-RK-FV method for convection-diffusion equations

Throughout this section, overlines (e.g., uj(t)) denote uniform cell averages,

and tildes (e.g., ũj(t)) denote nonuniform cell averages. We discuss the EL-RK-FV

algorithm for the convection-diffusion equation (2.0.1). Since we use dimensional split-

ting methods for two-dimensional problems, it suffices to discuss the 1D EL-RK-FV

algorithm for problems of the form

ut + f(u)x = ϵuxx + g(x, t), (2.3.1)

where we impose periodic boundary conditions. Rewriting equation (2.3.1) in diver-

gence form, integrating over the same space-time region Ωj as in the ϵ = 0 case,

applying the divergence theorem and fundamental theorem of calculus, integrating

over [tn, tn+1], and converting to the time-differential form, we get the semi-discrete

formulation

d

dt

∫
Ĩj(t)

u(x, t)dx = −
[
F̂j+ 1

2
(t)− F̂j− 1

2
(t)
]
+ϵ

∫
Ĩj(t)

uxx(x, t)dx+

∫
Ĩj(t)

g(x, t)dx, (2.3.2)

where F̂j+ 1
2
(t) is any monotone numerical flux (e.g., Lax-Friedrichs flux) and Fj+ 1

2
(t)

is the modified flux function defined in (2.2.5).

55

2.3.1 Computing the uniform cell averages of uxx

When evolving equation (2.3.2) we will need to compute the uniform cell aver-

ages of uxx(x, t), defined by

uxx,j(t) :=
1

∆x

∫
Ij

uxx(x, t)dx. (2.3.3)

We use the centered five-point stencil {j − 2, j − 1, j, j + 1, j + 2} for linear

reconstruction. Let P (x ∈ Ij) be the linear reconstruction polynomial over the centered

five-point stencil. After some algebra, we find that the uniform cell averages uxx,j(t)

can be expressed in terms of the uniform cell averages uj(t) with fourth-order accuracy

using the equation

uxx,j(t) =
1

∆x2

[
− 1

12
4
3
−5

2
4
3
− 1

12

]


uj−2(t)

uj−1(t)

uj(t)

uj+1(t)

uj+2(t)


. (2.3.4)

For implementation it is easier to express equation (2.3.4) in matrix form (as-

suming periodic or zero boundary conditions). We denote this matrix D4 in Algorithm

2.5 stated later on. Computing the nonuniform cell averages ũxx,j(t) can now be done

using Algorithm 2.1.

2.3.2 Time evolution with implicit-explicit Runge-Kutta methods

We can split equation (2.3.1) into its non-stiff and stiff terms,

ut = F(u;x, t) + G(u;x, t), (2.3.5)

where F(u;x, t) = −f(u)x is the non-stiff convective term, and G(u;x, t) = ϵuxx+g(x, t)

is the stiff diffusive (and source) term. Discretization methods used for such problems

56

are implicit-explicit (IMEX) RK schemes [10, 44, 92]. The intuition behind these

schemes is straightforward – evolve the non-stiff term explicitly, and evolve the stiff

term implicitly. As such, each stage in the RK method will involve explicitly evaluating

the non-stiff term, and solving a linear system due to the stiff term.

All we need are the possibly nonuniform cell averages at each RK stage µ =

1, ..., s over the space-time regions Ωj. There are two approaches one can take to ap-

proximate the possibly nonuniform cell averages at each RK stage: (1) have a single

space-time partition for multiple RK stages and directly update the solution to the

possibly nonuniform traceback grid at each intermediate RK stage, or (2) have mul-

tiple space-time partitions for intermediate RK stages, and compute the uniform cell

averages at time t(µ) and project them onto the possibly nonuniform traceback grid

via Algorithm 2.1. Although the first approach is more intuitive, it is computationally

expensive since the system to be solved (from the implicit part) will depend on the

measure of each cell. We choose the second approach, as computing the uniform cell

averages at time t(µ) requires solving a system dependent only on the background uni-

form mesh size ∆x. Since we choose the second approach, we will need to: (1) solve for

the uniform cell averages at each consecutive stage, and (2) project the uniform cell

averages onto the possibly nonuniform traceback grid via Algorithm 2.1. Recall the

uniform cell averages u
(µ)
xx,j can be computed from the uniform cell averages u

(µ)
j using

equation (2.3.4).

For simplicity, we only use the IMEX RK schemes outlined in [10]. As per the no-

tation used by Ascher, et al., IMEX(s,σ,p) denotes using an s−stage diagonally-implicit

Runge-Kutta (DIRK) scheme for G(u;x, t), using a σ−stage explicit RK scheme for

F(u;x, t), and being of combined order p. Consider the semi-discrete formulation

(2.3.2) rewritten as
d

dt

∫
Ĩj(t)

u(x, t)dx = F(u; t) + G(u; t), (2.3.6)

where we redefine F(u; t) = −
[
F̂j+ 1

2
(t)− F̂j− 1

2
(t)
]
and G(u; t) = ϵ

∫
Ĩj(t)

uxx(x, t)dx +∫
Ĩj(t)

g(x, t)dx. Defining U (µ) :=
∫
Ĩj(t(µ))

u(x, t(µ))dx, the IMEX(s,σ,p) scheme over the

57

space-time region Ωj is as follows:

Un+1 = Un +∆t
s∑

µ=1

bµKµ +∆t
σ∑

µ=1

b̂µK̂µ, (2.3.7a)

Kµ = G(U (µ); t(µ)), µ = 1, 2, ..., s, (2.3.7b)

K̂1 = F(Un; tn), (2.3.7c)

K̂µ+1 = F(U (µ); t(µ)), µ = 1, 2, ..., s. (2.3.7d)

More precisely,

Kµ = ϵ

∫
Ĩj(t(µ))

uxx(x, t
(µ))dx+

∫
Ĩj(t(µ))

g(x, t(µ))dx, (2.3.8a)

K̂µ+1 = −
[
F̂j+ 1

2
(t(µ))− F̂j− 1

2
(t(µ))

]
. (2.3.8b)

Based on the IMEX RK method, the solution U (µ) over the traceback grid can be

approximated by

U (µ) = Un +∆t

µ∑
ν=1

aµ,νKν +∆t

µ∑
ν=1

âµ+1,νK̂ν , µ = 1, 2, ..., s. (2.3.9)

Recall that we choose not to directly update the solution over Ωj. Instead, we

opt to solve for the uniform cell averages at each RK stage and project them onto the

corresponding possibly nonuniform traceback grid. We define sub-space-time regions

µΩj for the µ-th stage of the IMEX RK scheme, as shown in Figures 2.3 and 2.4. The

space-time region µΩj traces back to time tn (using the same approximate characteristic

speeds as in Ωj) from time t(µ). Hence, at time t(µ) on the sub-space-time region µΩj

the grid is uniform. Lower left subscript µ denotes values confined to the sub-space-

time region µΩj. For example, 2U
n are the possibly nonuniform definite integrals (and

hence the possibly nonuniform cell averages) at time tn over the traceback cell in 2Ωj,

as seen in Figure 2.4.

The desired uniform cell averages u
(µ)
j = µU

(µ)/∆x at stage µ can be obtained by

58

Figure 2.3: The space-time region 1Ωj. Figure 2.4: The space-time region 2Ωj.

computing the first µ−stages of the IMEX RK scheme over the sub-space-time region

µΩj, given below.

µU
(µ) = µU

n +∆t

µ∑
ν=1

(aµ,ν)(µKν) + ∆t

µ∑
ν=1

(âµ+1,ν)(µK̂ν) (2.3.10a)

µKν = G(µU (ν); t(ν)), ν = 1, 2, ..., µ, (2.3.10b)

µK̂1 = F(µUn; tn), (2.3.10c)

µK̂ν+1 = F(µU (ν); t(ν)), ν = 1, 2, ..., µ. (2.3.10d)

More precisely,

µK1 = ϵ

∫
µĨj(t(ν))

uxx(x, t
(ν))dx+

∫
µĨj(t(ν))

g(x, t(ν))dx, (2.3.11a)

µK̂ν+1 = −
[
F̂j+ 1

2
(t(ν))− F̂j− 1

2
(t(ν))

]
. (2.3.11b)

Note that µK̂ν+1 uses the cell averages restricted to the sub-space-time regions

µΩj. Further note that equation (2.3.10) can recycle and reuse the uniform cell averages

already computed during stages 1, 2, ..., µ−1. Simply project the uniform cell averages

(u
(ν)
j or u

(ν)
xx,j, ν = 1, 2, ..., µ − 1) onto the traceback grids formed by the space-time

regions µΩj. Although IMEX RK schemes are straightforward, it is easy to get lost in

the notation. To help demonstrate the EL-RK-FV algorithm coupled with an IMEX

RK scheme, we present the IMEX(2,2,2) case in Appendix A.

59

Algorithm 2.5. EL-RK-FV algorithm coupled with an IMEX RK scheme [10]

Input: uniform cell averages unj .

Output: uniform cell averages un+1
j .

Compute the possibly nonuniform traceback cell averages ũj(t
n) using Algorithm

2.1.

Store K̂1 = F(Un; tn). This is the traceback grid in Ωj.

do µ = 1, 2, ..., s

1. Compute the uniform cell averages u
(µ)
j at time t(µ) with equation (2.3.10).

i. Restrict yourself to the space-time region µΩj.

ii. Compute the values µKν and µK̂ν+1 at each stage ν = 1, 2, ..., µ− 1

using Algorithm 2.1 to compute the necessary nonuniform cell averages,

and Algorithm 2.2 for the modified flux function. Definite integrals of

g(x, t) can be computed using a Gaussian quadrature.

iii. Recalling equation (2.3.4), solve equation (2.3.10) by setting it up as

the linear system

(
I− aµ,µϵ∆t

∆x2
D4

)
µ

#»

U (µ) = µ
#»

U n+∆t

µ−1∑
ν=1

(aµ,ν)(µ
#»

Kν)+∆t

µ∑
ν=1

(âµ+1,ν)(µ
#»

K̂ν)+aµ,µ∆t
#»g (x, t(µ)),

where #»g j(x, t
(µ)) =

∫
Ij
g(x, t(µ))dx.

iv. Store the uniform cell averages u
(µ)
j = µU

(µ)
j /∆x.

2. Compute and store the uniform cell averages u
(µ)
xx,j using equation (2.3.4).

3. Compute the possibly nonuniform traceback cell averages ũ
(µ)
j using

Algorithm 2.1.

4. Compute the possibly nonuniform traceback cell averages ũ
(µ)
xx,j using

Algorithm 2.1.

5. Compute and store Kµ and K̂µ+1. Note that we are back on the possibly

nonuniform traceback grid consisting of cells Ĩj(t
(µ)).

60

end do

Compute Un+1 = Un +∆t
s∑

µ=1

bµKµ +∆t
σ∑

µ=1

b̂µK̂µ.

Compute the uniform cell averages un+1
j = Un+1

j /∆x.

2.3.3 Mass conservation

We now show that the 1D EL-RK-FV algorithm is mass conservative when

coupled with any IMEX RK scheme in [10]. Since we extend the EL-RK-FV algorithm

to higher dimensions via dimensional splitting in this paper, showing mass conservation

for the 1D problem suffices. Note that mass conservation of the ϵ = 0 case can be proved

just as easily.

Proposition 2.1. (Mass conservative [133]). The 1D EL-RK-FV algorithm coupled

with any IMEX RK scheme in [10] for (non)linear convection-diffusion equations is mass

conservative, assuming the source term g(x, t) = 0 and periodic boundary conditions.

Proof. Making use of the semi-discrete form of the convection-diffusion equation,

∫
Ij

u(x, tn+1)dx =

∫
Ĩj(tn)

u(x, tn)dx−
∫ tn+1

tn

{
F̂j+ 1

2
(t)− F̂j− 1

2
(t)− ϵ

∫
Ĩj(t)

uxx(x, t)dx

}
dt

=

∫
Ĩj(tn)

u(x, tn)dx−
∫ tn+1

tn

{
F̂j+ 1

2
(t)− F̂j− 1

2
(t)

− ϵ
(
ux(x̃j+ 1

2
(t), t)− ux(x̃j− 1

2
(t), t)

)}
dt.

(2.3.12)

Summing over all j = 1, 2, ..., Nx and making use of the periodic boundary conditions,

∫ b

a

u(x, tn+1)dx =

∫ b

a

u(x, tn)dx. (2.3.13)

61

Remark 2.4. By virtue of approximating the exact characteristics, the CFL condition

is much more relaxed when compared to the standard RK-FV method. On the other

hand, Algorithm 2.2 is more expensive than a standard WENO procedure on a uniform

grid. The computational savings of the EL-RK-FV method will be more significant for

solving convection-diffusion equations, as the computational overhead in the remapping

algorithm is less significant compared with the implicit solver for the stiff diffusion

term. In our computational experiments, we find that the proposed algorithm is most

advantageous for convection-dominated problems. Moreover, it is advantageous to take

larger time steps with numerical stability for convection-diffusion problems when the

convective and diffusive terms are of similar magnitudes.

2.4 Numerical tests

In this section, we present results applying the proposed EL-RK-FV algorithm

to various benchmark problems. In particular, we include error tables and error plots

to investigate the spatial and temporal convergence of the algorithm. Mass conserva-

tion is also numerically verified by applying the proposed algorithm to the 0D2V (zero

dimensions in physical space and two dimensions in velocity space) Leonard-Bernstein

Fokker-Planck equation. We assume a uniform mesh, apply WENO-AO(5,3) in Al-

gorithms 2.1 and 2.2, use three Gauss-Legendre nodes in Algorithm 2.3, and use the

fourth-order approximation given by equation (2.3.4) for the diffusive term. Unless

otherwise stated, for the time-stepping we use the fourth-order RK method for pure

convection problems, and IMEX(2,3,3) for convection-diffusion equations. We also use

second-order Strang splitting for two-dimensional convection-diffusion equations. Al-

though higher-order splitting methods can be used for pure convection problems, it

is well-known that negative time integration can lead to significant instabilities when

dealing with a diffusive term.

There are three sources of error: spatial approximation, time-stepping, and

splitting. Depending on the CFL number and test problem, these three sources of

62

error will influence the observed order of convergence. We compute the L1, L2, and

L∞ errors (in one-dimension),

∥u− uexact∥1 = ∆x
Nx∑
j=1

|uj − uexact,j| (2.4.1a)

∥u− uexact∥2 =

√√√√∆x
Nx∑
j=1

|uj − uexact,j|2 (2.4.1b)

∥u− uexact∥∞ = max
1≤j≤Nx

|uj − uexact,j| (2.4.1c)

Note that for the norms defined above, ∥u− uexact∥1 ≤ |D|∥u− uexact∥∞.

2.4.1 Pure convection problems: one-dimensional tests

Example 2.1. (1D transport with constant coefficient)

ut + ux = 0, x ∈ [0, 2π] (2.4.2)

with periodic boundary conditions and exact solution u(x, t) = sin (x− t). The errors

provided in Table 2.2 verify the convergence of the EL-RK-FV method when using

WENO-AO(5,3) and forward Euler. As expected, we see fifth-order convergence despite

the large CFL number. There is no temporal error for the convective part since the

characteristics are traced exactly and hence Fj+ 1
2
(t) = 0 for all t ∈ [tn, tn+1] and

j = 1, 2, ..., Nx.

Example 2.2. (1D transport with variable coefficient in space)

ut + (sin (x)u)x = 0, x ∈ [0, 2π] (2.4.3)

with periodic boundary conditions and exact solution

u(x, t) =
sin (2 arctan (e−t tan (x/2)))

sin (x)
.

63

Table 2.2: Convergence study with spatial mesh refinement for equation (2.4.2) with
forward Euler at Tf = 1.

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 1.09E-08 - 4.83E-09 - 2.86E-09 -
100 3.34E-10 5.03 1.48E-10 5.03 8.34E-11 5.10
200 9.86E-12 5.08 4.37E-12 5.08 2.51E-12 5.06
400 2.80E-13 5.14 1.43E-13 4.94 1.91E-13 3.72

As seen in Table 2.3, we observe the high-order convergence. As the CFL number

(and hence the time step) increases, the temporal error starts to play more of a role,

as evidenced by the fourth-order convergence. We verify the high-order temporal con-

vergence in Figure 2.5 by fixing the mesh Nx = 400 and varying the CFL from 0.2 to

20.

Table 2.3: Convergence study with spatial mesh refinement for equation (2.4.3) with
RK4 at Tf = 1.

CFL = 0.3
Nx L1 Error Order L2 Error Order L∞ Error Order
50 2.76E-04 - 2.53E-04 - 3.42E-04 -
100 3.05E-06 6.50 2.53E-06 6.64 2.94E-06 6.87
200 9.78E-08 4.96 7.90E-08 5.00 9.86E-08 4.90
400 3.24E-09 4.91 2.59E-09 4.93 3.23E-09 4.93

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 6.81E-02 - 4.11E-02 - 4.51E-02 -
100 1.18E-03 5.85 6.23E-04 6.04 6.38E-04 6.15
200 5.89E-05 4.32 3.63E-05 4.10 5.46E-05 3.54
400 3.71E-06 3.99 2.57E-06 3.82 4.31E-06 3.66

Example 2.3. (1D transport with variable coefficient in time)

ut +

(
u

t+ 1

)
x

= 0, x ∈ [0, 2π] (2.4.4)

64

with periodic boundary conditions and exact solution u(x, t) = exp(−5(x−log (t+ 1)−

π)2). Periodic boundary conditions are a valid assumption for sufficiently thin Gaussian

curves and small enough times. The expected high-order convergence for both small

and large CFL numbers is seen in Table 2.4. Fixing the mesh Nx = 400 and varying

the CFL number from 0.2 to 20, fifth-order convergence in time is seen in Figure 2.6.

Observe that there are two optimal CFL numbers for this mesh.

Table 2.4: Convergence study with spatial mesh refinement for equation (2.4.4) with
RK4 at Tf = 1.

CFL = 0.95
Nx L1 Error Order L2 Error Order L∞ Error Order
50 6.36E-03 - 5.80E-03 - 8.23E-03 -
100 2.37E-04 4.75 2.28E-04 4.67 5.33E-04 3.95
200 1.71E-06 7.12 1.30E-06 7.46 2.36E-06 7.82
400 4.40E-08 5.28 3.84E-08 5.08 6.02E-08 5.29

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 6.71E-02 - 5.72E-02 - 8.15E-02 -
100 7.74E-04 6.44 6.48E-04 6.46 1.06E-03 6.27
200 1.52E-05 5.67 1.26E-05 5.69 1.76E-05 5.91
400 9.65E-07 3.98 8.11E-07 3.96 9.61E-07 4.20

2.4.2 Pure convection problems: two-dimensional tests

Example 2.4. (2D transport with constant coefficient)

ut + ux + uy = 0, x, y ∈ [−π, π] (2.4.5)

with periodic boundary conditions and exact solution u(x, y, t) = sin (x+ y − 2t). The

expected high-order convergence is shown in Table 2.5 when using Strang splitting.

Just like equation (2.4.2), there is no temporal error for the convective part since the

characteristics are traced exactly.

65

Figure 2.5: Error plot corresponding to
equation (2.4.3) using RK4 with final time
Tf = 0.5.

Figure 2.6: Error plot corresponding to
equation (2.4.4) using RK4 with final time
Tf = 0.5.

Table 2.5: Convergence study with spatial mesh refinement for equation (2.4.5) with
forward Euler and CFL = 8 at Tf = 1.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 4.24E-09 - 7.49E-10 - 1.69E-10 -
200 1.27E-10 5.05 2.25E-11 5.05 5.15E-12 5.03
300 1.60E-11 5.11 2.84E-12 5.11 8.23E-13 4.52
400 3.57E-12 5.21 6.88E-13 4.92 3.68E-13 2.80

Example 2.5. (Rigid body rotation)

ut − yux + xuy = 0, x, y ∈ [−π, π] (2.4.6)

with periodic boundary conditions. We choose the exact solution u(x, y, t) = u(x, y, t =

0) = exp(−3(x2 + y2)) for convergence tests. The convergence results are presented in

Tables 2.6 and 2.7. Strang splitting dominates the error and we observe the expected

second-order convergence. Whereas, the spatial error dominates when using fourth-

order splitting as evidenced by the fifth-order convergence. The error plot using a fixed

mesh Nx = Ny = 200 and varying the CFL number from 0.1 to 50 is shown in Figure

2.7. Second-order convergence in time is observed when using Strang splitting, and

66

fourth-order convergence is observed when using fourth-order splitting. We note that

comparable convergence results were observed for the non-symmetric initial condition

u(x, y, t = 0) = exp(−3x2 − 2y2). To demonstrate the effectiveness of WENO-AO

controlling spurious oscillations, we choose the initial condition u(x, y, t = 0) = 1 if

x, y ∈ [−π/2, π/2]; u(x, y, t = 0) = 0 otherwise. With a fixed mesh Nx = Ny = 100

and CFL = 2.2, we compute the solution up to time Tf = 2π using SSP RK3. The

discontinuities are smoothed out and no spurious oscillations occur.

Table 2.6: Convergence study with spatial mesh refinement for equation (2.4.6) with
RK4 and CFL = 0.95 at Tf = 0.5.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 3.57E-05 - 1.54E-05 - 2.43E-05 -
200 1.83E-06 4.29 9.94E-07 3.95 1.23E-06 4.31
300 8.01E-07 2.04 4.35E-07 2.04 4.72E-07 2.36
400 4.50E-07 2.01 2.44E-07 2.01 2.55E-07 2.13

Fourth-order splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 1.05E-04 - 4.66E-05 - 8.95E-05 -
200 1.08E-06 6.60 6.13E-07 6.25 7.74E-07 6.85
300 1.39E-07 5.06 8.12E-08 4.99 1.02E-07 5.00
400 3.32E-08 4.99 1.93E-08 4.99 2.43E-08 4.99

Example 2.6. (Swirling deformation)

ut −
(
cos2 (x/2) sin (y)g(t)u

)
x
+
(
sin (x) cos2 (y/2)g(t)u

)
y
= 0, x, y ∈ [−π, π]

(2.4.7)

When testing convergence we set g(t) = cos (πt/Tf)π and choose the initial condition

to be the smooth (with C5 smoothness) cosine bell

u(x, y, t = 0) =


rb0 cos

6
(

rb(x,y)π

2rb0

)
, if rb(x, y) < rb0,

0, otherwise,

(2.4.8)

67

Table 2.7: Convergence study with spatial mesh refinement for equation (2.4.6) with
RK4 and CFL = 8 at Tf = 0.5.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 4.97E-04 - 2.68E-04 - 2.78E-04 -
200 1.24E-04 2.00 6.74E-05 1.99 6.86E-05 2.02
300 5.59E-05 1.97 3.03E-05 1.97 3.08E-05 1.97
400 3.20E-05 1.94 1.73E-05 1.94 1.76E-05 1.94

Fourth-order splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 4.95E-05 - 2.46E-05 - 6.82E-05 -
200 4.84E-07 6.68 2.92E-07 6.39 4.77E-07 7.16
300 6.17E-08 5.08 3.86E-08 4.99 6.19E-08 5.03
400 1.47E-08 4.99 9.22E-09 4.88 1.47E-08 5.00

Figure 2.7: Error plot for (2.4.6) with
RK4 at Tf = 0.5. Nx = Ny = 200.

Figure 2.8: Plot of the numerical solution
to (2.4.6) with SSP RK3 and CFL = 2.2
at Tf = 2π. Nx = Ny = 100.

where rb0 = 0.3π and rb(x, y) =
√

(x− xb0)2 + (y − yb0)2 with (xb0, y
b
0) = (0.3π, 0). The

convergence results under spatial mesh refinement are presented in Tables 2.8 and 2.9.

Surprisingly, high-order convergence is observed in all test cases, even for the large

CFL number of 8. In particular, we observed super-convergence for CFL = 8 when

using Strang splitting. We got comparable convergence results when letting the initial

condition be: (1) a cosine bell of C3 smoothness, and (2) the cosine bell (2.4.8) but

68

with xb0 = 0.6π and the width in the x−direction scaled by a factor of 1/2.

The temporal orders of convergence are shown in Figure 2.9 using a fixed mesh

Nx = Ny = 200 and varying the CFL number from 0.1 to 25. When using Strang

splitting the temporal convergence switches from second-order to third-order, indi-

cating that for very large CFL numbers the splitting error does not dominate the

time-stepping error as much. Fourth-order convergence is observed when using fourth-

order splitting. To demonstrate the effectiveness of WENO-AO in controlling spurious

oscillations we set g(t) = 1 and choose the initial condition [117]

u(x, y, t = 0) =


1, if rb(x, y) < rb0,

0, otherwise,

(2.4.9)

where rb0 = 8π/5 and rb(x, y) =
√

(x− xb0)2 + (y − yb0)2 with (xb0, y
b
0) = (π, π). With a

fixed mesh Nx = Ny = 100 and CFL = 8, we compute the solution up to time Tf = 5π

using SSP RK3 and Strang splitting. The discontinuities are smoothed out and no

spurious oscillations occur.

Table 2.8: Convergence study with spatial mesh refinement for equation (2.4.7) with
RK4 and CFL = 0.95 at Tf = 1.5.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 5.17E-03 - 6.11E-03 - 2.04E-02 -
200 1.69E-04 4.94 1.69E-04 5.18 4.80E-04 5.41
300 3.12E-05 4.16 3.85E-05 3.64 1.41E-04 3.01
400 8.29E-06 4.61 1.12E-05 4.66 4.66E-05 3.86

Fourth-order splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 1.42E-02 - 1.73E-02 - 5.25E-02 -
200 3.98E-04 5.16 3.70E-04 5.54 9.15E-04 5.84
300 7.69E-05 4.06 9.02E-05 3.48 3.24E-04 2.56
400 2.20E-05 4.35 2.89E-05 3.96 1.17E-04 3.52

69

Table 2.9: Convergence study with spatial mesh refinement for equation (2.4.7) with
RK4 and CFL = 8 at Tf = 1.5.

Strang splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 1.90E-03 - 2.11E-03 - 6.83E-03 -
200 1.02E-04 4.23 8.88E-05 4.57 2.47E-04 4.79
300 1.90E-05 4.13 1.79E-05 3.94 6.36E-05 3.35
400 2.82E-06 6.63 4.11E-06 5.12 1.98E-05 4.05

Fourth-order splitting
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

100 3.89E-03 - 4.31E-03 - 1.43E-02 -
200 1.30E-04 4.90 1.34E-04 5.01 4.42E-04 5.01
300 2.41E-05 4.16 3.32E-05 3.44 1.40E-04 2.84
400 6.54E-06 4.53 1.02E-05 4.10 4.81E-05 3.70

Figure 2.9: Error plot for (2.4.7) with
RK4 at Tf = 1.5. Nx = Ny = 200.

Figure 2.10: Plot of the numerical solu-
tion to (2.4.7) with g(t) = 1, SSP RK3
and CFL = 8 at Tf = 5π. Nx = Ny =
100.

2.4.3 Convection-diffusion equations: one-dimensional tests

Example 2.7. (1D equation with constant coefficient)

ut + ux = ϵuxx, x ∈ [0, 2π] (2.4.10)

70

with periodic boundary conditions and exact solution u(x, t) = sin (x− t)exp(−ϵt). We

set ϵ = 1. The convergence results under spatial mesh refinement are shown in Table

2.10 for CFL = 0.95 and CFL = 8. In both cases we observe the expected third-order

convergence since we are using IMEX(2,3,3) for the time-stepping. Note that there is

no temporal error for the convective part since the characteristics are traced exactly

and hence Fj+ 1
2
(t) = 0 for all t ∈ [tn, tn+1] and j = 1, 2, ..., Nx. Figure 2.11 shows the

expected third-order convergence in time using fixed mesh Nx = 400 and varying the

CFL number from 0.1 to 15.

Table 2.10: Convergence study with spatial mesh refinement for equation (2.4.10) with
IMEX(2,3,3) at Tf = 1.

CFL = 0.95
Nx L1 Error Order L2 Error Order L∞ Error Order
50 1.87E-04 - 8.26E-05 - 4.66E-05 -
100 2.55E-05 2.87 1.13E-05 2.87 6.36E-06 2.87
200 3.34E-06 2.93 1.48E-06 2.93 8.35E-07 2.93
400 4.31E-07 2.95 1.91E-07 2.95 1.08E-07 2.95
800 5.44E-08 2.99 2.41E-08 2.99 1.36E-08 2.99

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 6.87E-02 - 3.04E-02 - 1.72E-02 -
100 1.09E-02 2.66 4.82E-03 2.66 2.72E-03 2.66
200 1.63E-03 2.74 7.22E-04 2.74 4.07E-04 2.74
400 2.27E-04 2.84 1.01E-04 2.84 5.69E-05 2.84
800 3.03E-05 2.91 1.34E-05 2.91 7.57E-06 2.91

Example 2.8. (1D equation with variable coefficient)

ut + (sin (x)u)x = ϵuxx + g, x ∈ [0, 2π] (2.4.11)

with periodic boundary conditions and g(x, t) = sin (2x)exp(−ϵt) and exact solution

u(x, t) = sin (x)exp(−ϵt). We set ϵ = 1. Table 2.11 shows the convergence results under

spatial mesh refinement. Third-order convergence in space is observed for CFL = 0.95.

71

Whereas, the convergence for CFL = 8 is roughly order 2.6 since the time-stepping

start to dominate. We note that the order of convergence for IMEX(2,3,3) under

increasing the CFL number dips slightly below three for larger CFL numbers. We

use fixed mesh Nx = 400 and vary the CFL number from 0.1 to 15 for the error plot

showing the temporal order of convergence in Figure 2.12.

Table 2.11: Convergence study with spatial mesh refinement for equation (2.4.11) with
IMEX(2,3,3) at Tf = 1.

CFL = 0.95
Nx L1 Error Order L2 Error Order L∞ Error Order
50 2.10E-03 - 9.99E-04 - 7.70E-04 -
100 3.99E-04 2.39 1.88E-04 2.41 1.44E-04 2.42
200 6.41E-05 2.64 2.99E-05 2.65 2.27E-05 2.66
400 9.84E-06 2.70 4.57E-06 2.71 3.44E-06 2.73
800 1.30E-06 2.92 6.04E-07 2.92 4.53E-07 2.92

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 7.50E-01 - 4.34E-01 - 3.92E-01 -
100 1.26E-01 2.58 6.60E-02 2.72 6.63E-02 2.56
200 1.74E-02 2.85 8.31E-03 2.99 6.50E-03 3.35
400 3.09E-03 2.50 1.46E-03 2.51 1.12E-03 2.53
800 5.03E-04 2.62 2.36E-04 2.63 1.81E-04 2.63

Figure 2.11: IMEX(2,3,3), ϵ = 1, Final
time Tf = 0.5.

Figure 2.12: IMEX(2,3,3), ϵ = 1, Final
time Tf = 0.5.

72

Example 2.9. (1D viscous Burgers’ equation)

ut +

(
u2

2

)
x

= ϵuxx, x ∈ [0, 2] (2.4.12)

with periodic boundary conditions. As in [153], we set ϵ = 0.1 and choose the initial

condition u(x, t = 0) = 0.2 sin (πx). The exact solution is

u(x, t) = 2ϵπ

∞∑
n=1

cnexp(−n2π2ϵt)n sin (nπx)

c0 +
∞∑
n=1

cnexp(−n2π2ϵt) cos (nπx)
,

where

c0 =

∫ 1

0

exp(−(1− cos (πx))/(10πϵ))dx

and

cn = 2

∫ 1

0

exp(−(1− cos (πx))/(10πϵ)) cos (nπx)dx for n = 1, 2, 3, ...

We computed the first ten Fourier coefficients in Mathematica® for the exact solution;

the eleventh Fourier coefficient was less than machine precision.

Table 2.12 shows the expected orders of convergence under spatial mesh refine-

ment. Third-order convergence is observed for CFL = 0.95. Whereas, the convergence

for CFL = 8 is slightly below order three since the time-stepping error starts to domi-

nate. W note that the order of convergence for IMEX(2,3,3) under increasing the CFL

number dips slightly below three for larger CFL numbers. The error plot in Figure

2.13 showing third-order convergence in time uses mesh Nx = 400 and CFL numbers

varying from 0.1 to 15.

Example 2.10. (The 0D1V Leonard-Bernstein (linearized) Fokker-Planck equation)

ft −
1

ϵ
((vx − vx)f)vx =

1

ϵ
Dfvxvx , vx ∈ [−2π, 2π] (2.4.13)

73

Table 2.12: Convergence study with spatial mesh refinement for equation (2.4.12) with
IMEX(2,3,3) at Tf = 1.

CFL = 0.95
Nx L1 Error Order L2 Error Order L∞ Error Order
50 9.50E-05 - 8.43E-05 - 1.17E-04 -
100 1.48E-05 2.68 1.32E-05 3.67 1.87E-05 2.65
200 2.42E-06 2.62 2.20E-06 2.59 3.21E-06 2.55
400 3.27E-07 2.88 3.00E-07 2.87 4.42E-07 2.86
800 4.28E-08 2.94 3.95E-08 2.93 5.86E-08 2.92

CFL = 8
Nx L1 Error Order L2 Error Order L∞ Error Order
50 1.26E-02 - 1.31E-02 - 2.24E-02 -
100 2.79E-03 2.17 2.50E-03 2.38 3.70E-03 2.60
200 4.73E-04 2.56 4.16E-04 2.59 5.64E-04 2.71
400 1.28E-04 1.89 1.15E-04 1.85 1.64E-04 1.78
800 1.97E-05 2.70 1.78E-05 2.70 2.56E-05 2.68

with zero boundary conditions and equilibrium solution the Maxwellian

fM(vx) =
n√

2πRT
exp

(
−(vx − vx)2

2RT

)
, (2.4.14)

where ϵ = 1, gas constant R = 1/6, temperature T = 3, thermal velocity vth =
√
2RT =

√
2D = 1, number density n = π, and bulk velocity vx = 0. These quantities

were chosen for scaling convenience. When testing convergence we set the initial distri-

bution f(vx, t = 0) = fM(vx). Table 2.13 shows the convergence results, for which we

use IMEX(4,4,3) for the time-stepping; we show the results using IMEX(4,4,3) because

it gave slightly better convergence than IMEX(2,3,3). We observe fourth-order con-

vergence under spatial mesh refinement for CFL = 0.95. Whereas, for CFL = 8 the

time-stepping error starts to dominate and we observe third-order convergence. The

error plot in Figure 2.14 showing third-order convergence in time uses a fixed mesh

Nvx = 400 and CFL numbers varying from 0.1 to 15. We note that although high-

order convergence is observed, the proposed EL-RK-FV algorithm is not equilibrium-

preserving.

74

Table 2.13: Convergence study with spatial mesh refinement for equation (2.4.13) with
IMEX(4,4,3) at Tf = 1.

CFL = 0.95
Nvx L1 Error Order L2 Error Order L∞ Error Order
50 8.02E-04 - 5.19E-04 - 5.65E-04 -
100 6.12E-05 3.71 3.83E-05 3.76 4.27E-05 3.73
200 4.41E-06 3.79 2.63E-06 3.87 2.84E-06 3.91
400 2.99E-07 3.88 1.73E-07 3.93 1.80E-07 3.98
800 2.03E-08 3.88 1.13E-08 3.94 1.10E-08 4.04

CFL = 8
Nvx L1 Error Order L2 Error Order L∞ Error Order
50 9.33E-03 - 4.52E-03 - 3.63E-03 -
100 1.34E-03 2.80 6.60E-04 2.78 5.63E-04 2.69
200 1.91E-04 2.81 9.57E-05 2.79 8.15E-05 2.79
400 3.21E-05 2.57 1.61E-05 2.57 1.34E-05 2.61
800 4.13E-06 2.96 2.09E-06 2.95 1.74E-06 2.94

Figure 2.13: IMEX(2,3,3), ϵ = 0.1, Final
time Tf = 0.5.

Figure 2.14: IMEX(4,4,3), Final time
Tf = 0.5.

2.4.4 Convection-diffusion equations: two-dimensional tests

Example 2.11. (2D equation with constant coefficient)

ut + ux + uy = ϵ(uxx + uyy), x, y ∈ [0, 2π] (2.4.15)

75

with periodic boundary conditions and exact solution u(x, y, t) = exp(−2ϵt) sin (x+ y − 2t).

We set ϵ = 1. Third-order convergence under spatial mesh refinement is seen in Table

2.14 for CFL = 0.95 and CFL = 8. As with equation (2.4.10), there is no temporal

error for the convective part since the characteristics are traced exactly. Note that the

error is larger for CFL = 8 than CFL = 0.95 since this problem also has diffusion.

Figure 2.15 shows the third-order convergence in time using fixed mesh Nx = Ny = 400

and varying the CFL number from 6 to 20.

Table 2.14: Convergence study with spatial mesh refinement for equation (2.4.15) with
IMEX(2,3,3) and Strang splitting at Tf = 0.5.

CFL = 0.95
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 6.74E-05 - 1.19E-05 - 2.68E-06 -
100 1.02E-05 2.72 1.81E-06 2.72 4.07E-07 2.72
200 1.41E-06 2.86 2.49E-07 2.86 5.62E-08 2.86
400 1.86E-07 2.92 3.29E-08 2.92 7.41E-09 2.92

CFL = 8
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 3.92E-02 - 6.94E-03 - 1.56E-03 -
100 5.82E-03 2.75 1.03E-03 2.75 2.32E-04 2.75
200 8.09E-04 2.85 1.43E-04 2.85 3.22E-05 2.85
400 1.07E-04 2.92 1.90E-05 2.92 4.27E-06 2.92

Example 2.12. (Rigid body rotation with diffusion)

ut − yux + xuy = ϵ(uxx + uyy) + g, x, y ∈ [−2π, 2π] (2.4.16)

with periodic boundary conditions, g(x, y, t) = (6ϵ−4xy−4ϵ(x2+9y2))exp(−(x2+3y2+

2ϵt)), and exact solution u(x, y, t) = exp(−(x2 + 3y2 + 2ϵt)). We set ϵ = 1. Table 2.15

shows the order of convergence when using IMEX(4,4,3). We use IMEX(4,4,3) instead

of IMEX(2,3,3) because the latter choice, along with the Strang splitting, showed an

order of convergence less than two for large CFL numbers. The expected second-order

76

convergence in time (due to Strang splitting) is seen in Figure 2.16 assumes fixed mesh

Nx = Ny = 400 and CFL numbers varying from 6 to 20.

Table 2.15: Convergence study with spatial mesh refinement for equation (2.4.16) with
IMEX(4,4,3) and Strang splitting at Tf = 0.5.

CFL = 0.95
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 3.22E-03 - 1.42E-03 - 1.44E-03 -
100 3.92E-04 3.04 1.75E-04 3.02 2.00E-04 2.85
200 7.27E-05 2.43 3.14E-05 2.47 3.54E-05 2.50
400 1.65E-05 2.14 7.11E-06 2.15 7.80E-06 2.18

CFL = 5
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 2.21E-02 - 8.81E-03 - 7.44E-03 -
100 5.98E-03 1.89 2.48E-03 1.83 2.46E-03 1.60
200 1.61E-03 1.89 6.81E-04 1.86 7.14E-04 1.79
400 4.24E-04 1.93 1.81E-04 1.91 1.94E-04 1.88

Figure 2.15: IMEX(2,3,3), ϵ = 1, Final
time Tf = 0.5.

Figure 2.16: IMEX(4,4,3), ϵ = 1, Final
time Tf = 0.1.

Example 2.13. (Swirling deformation with diffusion)

ut−
(
cos2 (x/2) sin (y)f(t)u

)
x
+
(
sin (x) cos2 (y/2)f(t)u

)
y
= ϵ(uxx+uyy), x, y ∈ [−π, π]

(2.4.17)

77

When testing the convergence we set f(t) = cos (πt/Tf)π, ϵ = 1, and choose the initial

condition to be the cosine bell in equation (2.4.8). Since there is no analytic solution,

we use a reference solution computed with a mesh size of 400 × 400 and CFL = 0.1.

The convergence results under spatial mesh refinement are presented in Table 2.16. The

splitting error seems to dominate the time-stepping error for CFL = 0.95 as evidenced

by the apparent second-order convergence. Whereas, the time-stepping error seems to

contribute more for CFL = 8. Due to the interplay between the time-stepping and

splitting errors, the temporal order 2.4 is also observed in Figure 2.17, for which we

use fixed mesh Nx = Ny = 400 and CFL numbers varying from 6 to 20.

Table 2.16: Convergence study with spatial mesh refinement for equation (2.4.17) with
IMEX(2,3,3) and Strang splitting at Tf = 0.1.

CFL = 0.95
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 4.98E-04 - 2.57E-04 - 3.38E-04 -
100 9.13E-05 2.45 4.58E-05 2.49 6.05E-05 2.48
200 1.91E-05 2.26 9.56E-06 2.26 1.22E-05 2.31
400 4.48E-06 2.09 2.19E-06 2.13 2.61E-06 2.23

CFL = 8
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 5.93E-02 - 3.60E-02 - 5.82E-02 -
100 2.05E-02 1.53 1.16E-02 1.63 1.65E-02 1.82
200 3.14E-03 2.71 1.67E-03 2.80 2.04E-03 3.01
400 6.08E-04 2.37 3.13E-04 2.41 4.16E-04 2.30

Example 2.14. (2D viscous Burgers’ equation)

ut +

(
u2

2

)
x

+

(
u2

2

)
y

= ϵ(uxx + uyy) + g, x, y ∈ [−π, π] (2.4.18)

with periodic boundary conditions. As in [177], we set ϵ = 0.1, g(x, y, t) = exp(−4ϵt) sin (2(x+ y)),

and suppose the solution u(x, y, t) = exp(−2ϵt) sin (x+ y). The convergence results are

presented in Table 2.17. The splitting error seems to dominate the time-stepping error

78

for CFL = 0.95 as evidenced by the second-order convergence. Whereas, the time-

stepping error seems to contribute more for CFL = 8 since the order is between two

and three. The temporal order of convergence in the L1 norm is roughly 2.3, as seen

in Figure 2.18, for which we use fixed mesh Nx = Ny = 400 and CFL numbers varying

from 6 to 20.

Table 2.17: Convergence study with spatial mesh refinement for equation (2.4.18) with
IMEX(2,3,3) and Strang splitting at Tf = 0.5.

CFL = 0.95
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 3.01E-04 - 5.21E-05 - 1.19E-05 -
100 7.12E-05 2.08 1.30E-05 2.00 3.42E-06 1.80
200 1.76E-05 2.02 3.34E-06 1.96 9.42E-07 1.86
400 4.53E-06 1.95 8.60E-07 1.96 2.49E-07 1.92

CFL = 8
Nx = Ny L1 Error Order L2 Error Order L∞ Error Order

50 8.11E-02 - 1.60E-02 - 5.80E-03 -
100 1.02E-02 2.99 2.00E-03 3.00 7.78E-04 2.90
200 1.61E-03 2.66 3.01E-04 2.74 9.81E-05 2.99
400 3.47E-04 2.21 5.97E-05 2.33 1.35E-05 2.86

Figure 2.17: IMEX(2,3,3), ϵ = 1, Final
time Tf = 0.1.

Figure 2.18: IMEX(2,3,3), ϵ = 0.1, Final
time Tf = 0.2.

79

Example 2.15. (The 0D2V Leonard-Bernstein (linearized) Fokker-Planck equation)

ft −
1

ϵ
((vx − vx)f)vx −

1

ϵ
((vy − vy)f)vy =

1

ϵ
D(fvxvx + fvyvy), vx, vy ∈ [−2π, 2π]

(2.4.19)

with zero boundary conditions and equilibrium solution the Maxwellian

fM(vx, vy) =
n

2πRT
exp

(
−(vx − vx)2 + (vy − vy)2

2RT

)
, (2.4.20)

where ϵ = 1, gas constant R = 1/6, temperature T = 3, thermal velocity vth =
√
2RT =

√
2D = 1, number density n = π, and bulk velocities vx = vy = 0. These

quantities were chosen for scaling convenience. When testing the spatial and temporal

orders of accuracy we set the initial distribution f(vx, vy, t = 0) = fM(vx, vy). Table

2.19 shows the convergence results under spatial mesh refinement. We observe higher

fourth-order convergence in space for CFL = 0.95. The time-stepping and splitting

errors start to dominate the spatial error for larger CFL numbers, as observed for

CFL = 8. Figure 2.19 shows the temporal order of convergence is roughly 2.6 for fixed

mesh Nvx = Nvy = 400 and CFL numbers varying from 6 to 20. We again note the

interplay between the third-order time-stepping and second-order splitting.

When testing for relaxation of the system, we choose the initial distribution

f(vx, vy, t = 0) = fM1(vx, vy)+fM2(vx, vy), that is, the sum of two randomly generated

Maxwellians such that the total macro-parameters are preserved. The number density,

bulk velocities, and temperature of each Maxwellian are listed in Table 2.18. We set

vy = 0 so that the two generated Maxwellians are shifted only along the vx axis.

fM1 fM2

n 1.990964530353041 1.150628123236752
vx 0.4979792385268875 -0.8616676237412346
vy 0 0
T 2.46518981703837 0.4107062104302872

Table 2.18: n = π, v = 0, and T = 3.

80

Ideally, the macro-parameters we want to conserve are number density (n),

momentum (nv), and energy (1
2
nv2 + nT), where in two dimensions we define

n =

∫ ∞

−∞

∫ ∞

−∞
f(v)dvydvx, (2.4.21a)

v =
1

n

∫ ∞

−∞

∫ ∞

−∞
vf(v)dvydvx, (2.4.21b)

T =
1

2Rn

∫ ∞

−∞

∫ ∞

−∞
(v − v)2f(v)dvydvx. (2.4.21c)

It is important to note that although temperature might look like a conserved

quantity since v = 0, and hence energy reduces to nT , in fact it is not. Figures

2.20(f) and 2.21 show the solution using fixed mesh Nvx = Nvy = 200 and CFL = 6.

Although we computed the solution up to time Tf = 20, there was no difference (to

the naked eye) after time t = 3. Although the solution appears to reach equilibrium,

we again note that the proposed EL-RK-FV algorithm is not equilibrium-preserving.

Figure 2.20(a) verifies mass conservation, but Figure 2.20(b) implies that the numerical

solution has some negative values and is not positivity-preserving. Referring to Figure

2.20, momentum and energy are not conserved. As seen in Figure 2.20(d), the bulk

velocity in the vy-direction is on the order of machine epsilon because we constructed

the two Maxwellians in Table 2.18 such that vM1,y = vM2,y = 0. Hence, there is no

drift velocity in the vy-direction.

2.5 Conclusions and follow-up work

A new EL-RK-FV method was presented for solving convection and convection-

diffusion equations [38, 133]. Whereas SL methods require solving for the exact char-

acteristics, which is often highly nontrivial for nonlinear problems, our EL method

computes linear space-time curves as the approximate characteristics. WENO-AO

schemes allowed us to perform spatial reconstruction at arbitrary points which was

essential since the traceback grid was not necessarily the (uniform) background grid.

By working with the time-differential form, we could use a method-of-lines approach.

81

Table 2.19: Convergence study with spatial mesh refinement for equation (2.4.19) with
IMEX(2,3,3) and Strang splitting at Tf = 0.5.

CFL = 0.95
Nvx = Nvy L1 Error Order L2 Error Order L∞ Error Order

50 9.07E-04 - 4.22E-04 - 5.49E-04 -
100 7.19E-05 3.66 3.15E-05 3.74 4.36E-05 3.66
200 5.35E-06 3.75 2.15E-06 3.87 2.93E-06 3.89
400 3.54E-07 3.92 1.37E-07 3.98 1.82E-07 4.01

CFL = 8
Nvx = Nvy L1 Error Order L2 Error Order L∞ Error Order

50 5.70E-03 - 1.84E-03 - 1.26E-03 -
100 1.08E-03 2.40 3.53E-04 2.39 2.82E-04 2.16
200 1.69E-04 2.67 5.68E-05 2.64 5.02E-05 2.49
400 2.73E-05 2.63 9.30E-06 2.61 8.63E-06 2.54

Figure 2.19: IMEX(2,3,3), Final time Tf = 0.1.

Explicit RK methods were used for pure convection problems, and IMEX RK methods

were used for convection-diffusion equations. Dimensional splitting was used for higher-

dimensional problems. Several one- and two-dimensional test problems demonstrated

the algorithm’s robustness, high-order accuracy, and ability to allow extra large time

steps. Ongoing and future work includes modifying the algorithm to handle shocks and

rarefaction waves [40, 180], and developing a non-splitting version of the EL-RK-FV

algorithm.

82

(a)

(c)

(e)

(b)

(d)

(f)

Figure 2.20: Figures (a)-(e): Relative macro-parameters for equation (2.4.19) with
initial distribution of two Maxwellians defined by Table 2.18. Mesh Nvx = Nvy = 200,
CFL = 6. Figure (f): The initial distribution.

83

Figure 2.21: Various snapshots of the numerical solution to equation (2.4.19) with
initial distribution of two Maxwellians defined by Table 2.18. Mesh Nvx = Nvy = 200,
CFL = 6. Times: 0.15, 0.30, 0.45, 0.60, 0.75, 3.

84

Chapter 3

IMPLICIT LOW-RANK INTEGRATORS FOR SOLVING DIFFUSION
EQUATIONS

In this chapter, we are concerned with efficiently solving diffusion equations of

the form 
ut = ∇ · (D · ∇u) , x ∈ Ω, t > 0,

u(x, t = 0) = u0(x), x ∈ Ω,

(3.0.1)

where u(x, t) is the solution, Ω ⊂ Rd is the spatial domain, d ∈ N is the number of

dimensions, and D is the anisotropic diffusion tensor. Within this chapter we only deal

with the two-dimensional case in Cartesian coordinates in which D is diagonal,

ut = d21uxx + d22uyy, (x, y) ∈ (0, 1)2, t > 0, (3.0.2)

for constants d1, d2 > 0.

A novel implicit low-rank method for solving diffusion equations is presented.

Traditional implicit time-integrators are used to evolve the solution. The main novelty

of the proposed method is that we represent the time-dependent solution in a low-rank

framework and strategically evolve the low-rank decomposition of the solution based

on traditional implicit time-integrators. In particular, the solution is decomposed into

one-dimensional time-dependent bases connected by time-dependent coefficients. Our

unique strategy is to evolve these one-dimensional bases in a dimension-by-dimension

fashion. The target dimension basis is updated by first freezing and correspondingly

projecting the solution in all the non-target dimensions. Once the bases from all di-

mensions are updated, we then evolve the coefficients be a projection onto the subspace

85

spanned by the updated bases in all dimensions. Finally, a SVD type truncation is ap-

plied to further compress the solution for optimal computational efficiency. Backward

Euler method is used for the first-order scheme. Second-order schemes are also pre-

sented using second-order stiffly-accurate diagonally implicit Runge-Kutta methods,

Crank-Nicolson method, and second-order backward differentiation formula.

The chapter is organized as follows. Section 3.1 reviews the technical material

required to understand the proposed method (e.g., matrix and tensor decompositions,

low-rank tensor approaches for time-dependent PDEs, von Neumann stability analysis).

Section 3.2 outlines the proposed method, including the first-order scheme, second-

order scheme and computational complexity. Section 3.3 presents the numerical results

verifying convergence and efficiency. Section 3.4 ends with concluding remarks and

ongoing work.

3.1 Review of technical components

In this section, we review three technical components for the development of

low-rank time integrators: tensor decompositions, low-rank tensor approaches for time-

dependent PDEs, and von Neumann stability analysis. The matrix and tensor decom-

positions presented in this section demonstrate how data can be compressed if there is

low-rank structure. The two presented low-rank tensor approaches for time-dependent

PDEs offer a foundation for understanding the proposed method. Lastly, the von Neu-

mann analysis is used to assess the stability and predicted solution behavior of various

implicit time-discretizations.

3.1.1 Tensor decompositions

Large-scale scientific simulations pose several challenges when storing, comput-

ing and analyzing the avalanche of data they produce. In our case, data takes the form

of a solution to a high-dimensional partial differential equation, u(x1, ..., xd). Most clas-

sical techniques for two-dimensional equations store the solution in two-dimensional

arrays, or rather, order-2 tensors (i.e., matrices). When solving a high-dimensional

86

equation, the solution can naturally be stored as a high-order tensor. An order-d

tensor XXX can be thought of as a d−index array.

Seeing how quickly memory can become an issue, this necessitates tensor de-

compositions that can compress the data and reduce the storage requirement and

computational complexity [106, 109, 112, 135, 174]. A good literature survey of some

developments in low-rank tensor approximations for scientific computing is [82, 88, 109].

In the following subsections, we review two classical matrix decompositions typ-

ically taught in a numerical linear algebra course, followed by a popular high-order

tensor decomposition. We present the material in the context of storing a solution

u(x1, ..., xd).

3.1.1.1 Singular value decomposition (SVD)

The material from this subsection is predominantly taken from [76, 172]. Con-

sider a solution u(x, y) stored as a matrix U ∈ RNx×Ny , where Uij = u(xi, yj) for

i = 1, 2, ..., Nx and j = 1, 2, ..., Ny. Assume for now that we know the rank of U is

r ≤ min(Nx, Ny).

Informally speaking, we can find an orthonormal basis for colspace(U), say

{vx,1,vx,2, ...,vx,r}, ordered from “most important vector” to “least important vector”.

The weights of the vectors in this ordered basis are respectively σ1 ≥ σ2 ≥ ... ≥ σr > 0.

There is a nice geometric interpretation for what we mean by “important” described in

[172] that we omit here. The takeaway is that we have an ordered basis for colspace(U),

or rather, an ordered basis for the x−dimension.

A natural question arises – is there an ordered basis for the y−dimension? In

fact, there is an orthonormal basis {vy,1,vy,2, ...,vy,r} in y that corresponds to our

ordered basis in x. It turns out the vectors {vx,1,vx,2, ...,vx,r} are the eigenvectors of

UUT , and the weights σ1 ≥ σ2 ≥ ... ≥ σr > 0 are the square roots of the nonzero

eigenvalues ofUUT [172]. Moreover, the vectors {vy,1,vy,2, ...,vy,r} are the eigenvectors

of UTU, and the weights σ1 ≥ σ2 ≥ ... ≥ σr > 0 are the square roots of the nonzero

87

eigenvalues of UTU [172]. In this sense, the orthonormal bases are connected by the

weights σk, k = 1, 2, ..., r. All together, we have that

U = σ1vx,1v
T
y,1 + σ2vx,2v

T
y,2 + ...+ σrvx,rv

T
y,r.

The is known as the reduced singular value decomposition of matrix U. Letting

Vx ∈ RNx×r be the matrix with columns vx,k (known as the left singular vectors),

Vy ∈ RNy×r be the matrix with columns vy,k (known as the right singular vectors),

and Σ ∈ Rr×r be the diagonal matrix with diagonal entries σk for k = 1, 2, ..., r (known

as the singular values), the reduced SVD can be expressed more compactly as

U = VxΣVT
y =

r∑
k=1

σkvx,kv
T
y,k. (3.1.1)

Remark 3.1. We can alternatively derive the reduced SVD of a matrix from a linear

mappings viewpoint. As in the geometric interpretation described in [172], we could

consider an orthogonal (not unit vectors) basis {vx,1,vx,2, ...,vx,r} with lengths σ1 ≥

σ2 ≥ ... ≥ σr > 0. Let {vy,1,vy,2, ...,vy,r} be the orthonormal basis that U maps to

{vx,1,vx,2, ...,vx,r}. Normalizing and redefining the basis vectors vx,k := vx,k/σk, we

have the reduced SVD (3.1.1).

Remark 3.2 (Full singular value decomposition). In the case that r < Nx or r < Ny,

we might also desire orthonormal bases for all of RNx and RNy . However, we do not

want to affect the reduced SVD that has been constructed. We can extend the bases

from the reduced SVD to form our desired orthonormal bases, and then append zeros

to Σ. Define the following matrices:

Ṽx =

[
Vx V′

x

]
Nx×Nx

, Σ̃ =

Σ 0

0 0


Nx×Ny

, Ṽy =

[
Vy V′

y

]
Ny×Ny

,

where V′
x and V′

y are the appended bases. The full singular value decomposition

88

(SVD) of a matrix U ∈ RNx×Ny is

U = ṼxΣ̃ṼT
y . (3.1.2)

There is a very important interpretation of the SVD – data compression of a

matrix U. What if U is a very large matrix that is naturally low-rank in the sense that

the first r′ ≪ rank(U) singular values are more dominant? The degree of dominance

could be measured by some small tolerance ϵ (e.g., ϵ = O(1.0E − 10)). For example,

we can use a rank r′ matrix to approximate the full matrix U with an error specified

below in Theorem 3.1. The full-rank matrix U has a storage complexity of NxNy,

but a rank-r′ approximation has a storage complexity of r′(Nx + Ny + 1) ≪ NxNy to

store the first r′ singular values/vectors. Only keeping the first r′ rank-1 matrices in

equation (3.1.1),

U ≈ Ur′ :=
r′∑

k=1

σkvx,kv
T
y,k. (3.1.3)

Theorem 3.1 (Low-rank approximations from the SVD [61, 172]). Let U ∈ RNx×Ny

with r = rank(U). Further let 1 ≤ r′ ≤ r and define Ur′ as in equation (3.1.3). The

best rank-r′ approximation of U is given by the leading r′ factors of the SVD, that is,

∥U−Ur′∥ = inf
W∈RNx×Ny

rank(Ur′)≤r′

∥U−W∥ .

In particular,

∥U−Ur′∥2 =


σr′+1, 1 ≤ r′ < r,

0, r′ = r,

∥U−Ur′∥F =


√
σ2
k′+1 + ...+ σ2

r , 1 ≤ r′ < r,

0, r′ = r,

where ∥·∥2 denotes the L2 norm, and ∥·∥F denotes the Frobenius norm.

89

Takeaway 3.1. The reduced SVD can be used to approximate U by an ordered sum

of r′ rank-1 matrices. Moreover, this is the best rank-r′ approximation. This leads to

significant reduction in storage complexity when the formal rank of U is large.

Takeaway 3.2. The reduced SVD decomposes U into orthonormal bases for each

dimension ordered from “most important” to “least important.”

There is a vast literature on computing the (reduced) SVD of a matrix. Certain

algorithms are better suited for matrices with structure (e.g., tridiagonal matrices),

special matrices (e.g., Hankel matrices), matrices where Nx ≫ Ny, and so on. It

has been common practice over the past several decades to compute the SVD of a

matrix using a two-phase process [42, 172]. Phase 1 transforms the matrix into a

bidiagonal form; and Phase 2 diagonalizes the bidiagonal matrix from Phase 1. Both

phases together produce the singular values (from the diagonalization) and the singular

vectors (if desired) in an efficient and stable manner.

The computational complexity of Phase 1 is typically larger than that of Phase

2 since the latter works with a bidiagonal form of size Ny × Ny [42, 172]. Phase 2

requires O(N2
y) flops if only the singular values are required [42, 172], although the

more recent divide and conquer methods also compute the singular vectors in O(N2
y)

flops.

Given that Phase 1 usually dominates the computational complexity, we list a

few algorithms for Phase 1 presented in [42, 172]. We refer the reader to [42] for a

collection of algorithms for Phase 2. For the sake of this dissertation, the fine details

of each algorithm are not necessary and can be found in [42, 76, 172]. The simula-

tions contained within this dissertation use MATLAB’s svd function to compute the

(reduced) SVD of a matrix. MATLAB’s svd function uses LAPACK to compute the

SVD, and the routines used by LAPACK can be found in [5]. Although the algorithms

presented here are not necessarily what MATLAB uses in our simulations, they still

provide a good sense of the computational complexities that we expect to observe.

Algorithms for Phase 1 [172]:

90

� One-step (Golub-Kahan) bidiagonalization, ∼ 4NxN
2
y −

4

3
N3

y flops.

� Two-step (Lawson-Hanson-Chan) bidiagonalization, ∼ 2NxN
2
y + 2N3

y flops.

Better than Golub-Kahan bidiagonalization if Nx >
5

3
Ny.

� Three-step bidiagonalization, ∼ 4NxN
2
y −

4

3
N3

y −
2

3
(Nx −Ny)

3 flops.

Provides a smooth transition from one-step and two-step bidiagonalizations for
Ny < Nx < 2Ny but the improvement achieved is small.

As we will see in Section 3.1.2.2, the low-rank solutions involved in this chapter

will require computing the SVD of size Nx × r (or size r × r) matrices. In this case,

we expect the computational complexity to be roughly O(Nxr
2) flops, where r ≪ Nx.

Although not discussed here, we note that randomization methods have gained recent

popularity as an effective way to compute a near-best low-rank approximation of a

matrix [25, 90].

3.1.1.2 QR factorization

As with Section 3.1.1.1, the material from this subsection is predominantly

taken from [76, 172]. Consider a matrix U ∈ RNx×Ny with Nx ≥ Ny, and let its column

vectors be denoted uj, j = 1, 2, ..., Ny. The reduced QR factorization of a matrix

U ∈ RNx×Ny is

U = QR, (3.1.4)

where the columns of Q ∈ RNx×Ny are orthonormal, and uj ∈ span(q1, ...,qj) for

j = 1, 2, ..., Ny. The matrix R ∈ RNy×Ny is upper-triangular so that

uj = r1jq1 + r2jq2 + ...+ rjjqj, j = 1, 2, ..., Ny.

Remark 3.3. IfU is full-rank, then span(u1, ...,uj) = span(q1, ...,qj) for j = 1, 2, ..., Ny.

91

Remark 3.4. If U is rank-deficient, then at least one of the diagonal entries of R

will be zero. For example, assume u1 and u2 are linearly independent, but that u3 ∈

span(u1,u2) = span(q1,q2). There is no contribution from q3 and so r33 = 0.

Remark 3.5. Unlike the SVD, the QR factorization does not order the vectors in

a “most important” and “least important” fashion. However, the upper-triangular

matrix R does imply the linear (in)dependence of the column vectors of U and hence

the column vectors of Q that form an orthonormal basis for colspace(U).

In a spirit similar to the full SVD of a matrix in equation (3.1.2), we can extend

the orthonormal basis {q1,q2, ...,qNy} to an orthonormal basis for all of RNx . Define

the following matrices:

Q̃ =

[
Q Q′

]
Nx×Nx

, R̃ =

R
0


Nx×Ny

,

whereQ′ ∈ RNx×(Nx−Ny) holds the appended basis vectors. The full QR factorization

of a matrix U ∈ RNx×Ny is

U = Q̃R̃, (3.1.5)

where Q̃ is a unitary matrix.

As with Section 3.1.1.1, we suffice to only list two popular algorithms used to

compute the QR factorization presented in [172]. Although more efficient algorithms

might be used in practice, these provide a good sense of the computational complexi-

ties that we expect to observe. The simulations contained within this dissertation use

MATLAB’s qr function to compute the (reduced) QR factorization of a matrix. MAT-

LAB’s qr function uses LAPACK to compute the QR factorization, and the routines

used by LAPACK can be found in [5].

Algorithms for computing the QR factorization [172]:

� Modified Gram-Schmidt, ∼ 2NxN
2
y flops.

92

� Householder triangularization, ∼ 2NxN
2
y −

2

3
N3

y flops.

As we will see in Section 3.1.2.2, the low-rank solutions involved in this chapter

will require computing the QR factorization of size Nx× r matrices. In which case, we

expect the computational complexity to be roughly O(Nxr
2) flops, where r ≪ Nx.

3.1.1.3 CP decomposition

We have seen one instance of how a matrix can be expressed as a finite sum of

outer products of vectors, e.g., the SVD in equation (3.1.1). Componentwise, equation

(3.1.1) can be expressed as

U(i, j) =
r∑

k=1

σkvx,k(i)vy,k(j),

where U(i, j) denotes the (i, j) entry of matrix U. For reasons that will become clear

in a moment, we now denote entries of an array with tuples of the indices rather than

with subscripts.

A matrix is simply a two-index array, or rather, an order-2 tensor. Just like

a matrix can be expressed as, or approximated by, a finite sum of outer products of

vectors, so too can order-d tensors [106, 109, 112].

Definition 3.1 (Rank-1 tensor). Consider an order-d tensor XXX ∈ RN1×N2×...×Nd with

multi-index i = (i1, i2, ..., id) for which ik = 1, 2, ..., Nk for k = 1, 2, ..., d. We call XXX a

rank-1 tensor if for some vectors a(k) ∈ RNk , k = 1, 2, ..., d,

XXX = a(1) ◦ a(2) ◦ ... ◦ a(d), (3.1.6)

where ◦ denotes the outer product. The componentwise form of equation (3.1.6) is

XXX (i1, i2, ..., id) = a(1)(i1)a
(2)(i2)...a

(d)(id).

93

Definition 3.2 (Tensor rank). The rank of a tensor XXX , denoted rank(XXX), is the

smallest number of rank-1 tensors whose sum generates XXX .

Consider an order-d tensorXXX ∈ RN1×N2×...×Nd with multi-index i = (i1, i2, ..., id)

for which ik = 1, 2, ..., Nk for k = 1, 2, ..., d. We want to express the tensor XXX as

XXX ≈
R∑

r=1

a(1)
r ◦ a(2)

r ◦ ... ◦ a(d)
r , (3.1.7)

where ◦ denotes the outer product, and for each k = 1, 2, ..., d we have that a
(k)
r ∈ RNk

for r = 1, 2, ..., R. Equation (3.1.7) is known as the CANDECOMP/PARAFAC

(CP) decomposition; there are many names for this tensor decomposition summa-

rized in [109]. The CP decomposition factorizes a tensor into a sum of rank-1 tensors.

Given the vectors in equation (3.1.7), we can recover the tensor XXX to some tolerance.

Another way to write equation (3.1.7) is to normalize the vectors in the following way,

XXX ≈
R∑

r=1

λr
a
(1)
r∥∥∥a(1)
r

∥∥∥ ◦ a
(2)
r∥∥∥a(2)
r

∥∥∥ ◦ ... ◦ a
(d)
r∥∥∥a(d)
r

∥∥∥ , (3.1.8)

where λr =
∥∥∥a(1)

r

∥∥∥∥∥∥a(2)
r

∥∥∥ ...∥∥∥a(d)
r

∥∥∥. Componentwise, equations (3.1.7) and (3.1.8) can be

respectively expressed as

XXX (i1, i2, ..., id) ≈
R∑

r=1

a(1)r (i1)a
(2)
r (i2)...a

(d)
r (id).

XXX (i1, i2, ..., id) ≈
R∑

r=1

λr
a
(1)
r (i1)∥∥∥a(1)

r

∥∥∥ a
(2)
r (i2)∥∥∥a(2)

r

∥∥∥ ...a
(d)
r (id)∥∥∥a(d)

r

∥∥∥ .
It is important to note that with respect to each dimension, the vectors do not

need to be orthogonal. That is, for each k = 1, 2, ..., d, the vectors {a(k)
1 , a

(k)
2 , ..., a

(k)
R }

do not need to be orthogonal, although, in certain applications it is useful to have them

be orthogonal.

94

As mentioned earlier, the main attraction of tensor decompositions is their abil-

ity to significantly reduce storage requirements and computational complexities. A

full-blown tensor XXX has O(Nd) degrees of freedom and storing every entry is clearly

unreasonable for larger d. Yet, the CP decomposition (3.1.7) only requires storing R

vectors of size N × 1 for each dimension. So, the storage complexity of the CP decom-

position is O(dRN). This is much less than Nd, especially for higher-order tensors.

Takeaway 3.3. The CP decomposition (3.1.7) reduces the storage complexity from

O(Nd) to O(dRN).

There is a vast literature on the CP decomposition, and we refer the reader to

the excellent paper by Kolda and Bader [109] for a rich source of references. For the

sake of this dissertation, here are a few important remarks.

Remark 3.6. The CP decomposition is not unique.

Remark 3.7. The rank of a tensor can also be defined as the smallest number of

rank-1 tensors for which we attain an exact CP decomposition, where “exact” indicates

equality in equations (3.1.7) and (3.1.8).

Remark 3.8. The best rank-k approximation of an order-2 tensor is given by the

leading k factors of the SVD [61]. The same analogy is not true for tensors of order

three or higher. In fact, a tensor may end up being approximated arbitrarily well by a

low-rank CP decomposition. We suffice to state that in such cases, a different notion

of rank, known as border rank, is used. We omit further discussion and refer the

reader to [106, 109, 112] for more details.

The CP decomposition is attractive because of its reduction in storage com-

plexity, as well as its straightforward construction. Moreover, it remains a popular

tool in the data science and machine learning communities due to its flexibility and

interpretability [3, 137, 146]. It is also a popular tools in psychometrics and biological

applications, and several references are provided in [109]. Yet, the rank degeneracy

95

mentioned in Remark 3.8 poses a slight complication for large-scale simulations, and

other tensor decompositions with similar storage complexities are sometimes preferred

in higher-dimensional problems (e.g., Tucker [174], tensor train [111, 135], hierarchical

Tucker [85, 112]).

3.1.2 Low-rank tensor approaches for time-dependent PDEs

Several low-rank tensor methods have been developed for high-dimensional time-

dependent PDEs, particularly for kinetic models [45, 52, 62, 64, 65, 85, 105, 111]. Such

methods have been designed to take advantage of the low-rank structure inherent in

applicable PDEs. Some methods increase the rank of the numerical solution after each

time-step and thus use a truncation procedure to remove redundant basis vectors [85,

86]. Other methods assume a low-rank basis for the solution that evolves dynamically

[64, 65]. In this section, we review step-and-truncate methods and the dynamical

low-rank (DLR) framework.

3.1.2.1 Step-and-truncate methods

As we evolve the solutions to time-dependent PDEs, we want to ensure low-rank

structures are preserved. Step-and-truncate procedures are one way of maintaining low-

rank structure [86, 149]. Simply put, these methods truncate the solution after each

time-step, or rather, project the updated solution onto a lower-dimensional subspace.

Two recent algorithms are the step-truncation algorithms presented in [149], and the

basis removal procedures presented in [84, 85, 86]. The results in this dissertation use

the basis removal procedure from [86], discussed below.

An illustrative example

As a motivating example, say Un+1 = Vx,n+1Sn+1(Vy,n+1)T is the solution to

the two-dimensional heat equation. Updating the solution (e.g., by forward Euler

96

method) can increase the rank of the numerical solution going from time tn to tn+1.

Assuming Un has (low-)rank rn, one time-step of forward Euler yields

Vx,n+1Sn+1(Vy,n+1)T = Vx,nSn(Vy,n)T +∆t
(
DxVx,nSn(Vy,n)T +Vx,nSn(DyVy,n)T

)
,

(3.1.9)

where Dx and Dy approximate the second-partial derivatives. The updated solution

has grown from rank rn to rank 3rn.

Un+1 =

[
Vx,n DxVx,n Vx,n

]
Nx×3rn


Sn 0 0

0 ∆tSn 0

0 0 ∆tSn


3rn×3rn

[
Vy,n Vy,n DyVy,n

]T
Ny×3rn

.

(3.1.10)

Even if the solution has low-rank structure, the rank will continue to grow unless

a step-and-truncate method is performed, e.g., basis removal procedure. As discussed

in Section 3.1.1.1, the truncated SVD provides the optimal low-rank approximation.

Following the basis removal procedure in [86], let Vx,n+1, Sn+1 and Vy,n+1 be the

augmented matrices in equation (3.1.10). Using the reduced QR factorization and

SVD,

Vx,n+1︸ ︷︷ ︸
QR

Sn+1(Vy,n+1︸ ︷︷ ︸
QR

)T = Qx RxS
n+1RT

y︸ ︷︷ ︸
SV D

QT
y = (QxU)Σ(QyV)T .

Only keeping the rn+1 singular values larger than some tolerance ϵ > 0, redefine

the updated low-rank solution

Vx,n+1 := QxU:,1:rn+1 , Sn+1 := Σ1:rn+1,1:rn+1 , Vy,n+1 := QyV:,1:rn+1 .

Note that the columns of Qx and U being orthonormal implies that the columns of

QxU are orthonormal; and similarly for the columns of QyV.

Referring back to the computational complexities for the SVD and QR factoriza-

tion mentioned in Sections 3.1.1.1 and 3.1.1.2, notice that the flop count is dramatically

reduced for low-rank solutions. For notational simplicity we use N for spatial mesh

97

in each dimension, and r for the rank. According to the computational complexities

of the algorithms stated in Sections 3.1.1.1 and 3.1.1.2: the computational complexity

to compute the QR decompositions of Vx,n+1Vy,n+1 is O(Nr2) flops, and the compu-

tational complexity to compute the SVD of RxS
n+1RT

y ∈ Rr×r is O(r3) flops. The

computational cost of the matrix multiplications for the redefined updated bases is

O(Nr2). If r ≪ N , we avoid the curse of dimensionality since the overall compu-

tational complexity is dominated by O(Nr2) and grows linearly in N ; the full-rank

solution would have O(N3) flops for the SVD, QR factorizations and matrix multipli-

cations.

A simpler case

In the previous example, the matrices Vx,n+1 and Vy,n+1 were not assumed to

be orthonormal, hence why the QR factorization was needed. In the case where these

matrices are orthonormal, the QR factorization is not needed. Say we are simply given

the updated solution Un+1 = Vx,n+1Sn+1(Vy,n+1)T but that it is not yet truncated.

We want to compute a low-rank approximation by removing unnecessary basis vectors.

As discussed in Section 3.1.1.1, the truncated SVD provides the optimal low-rank

approximation. Computing the SVD of Sn+1,

Vx,n+1Sn+1(Vy,n+1)T = Vx,n+1UΣVT (Vy,n+1)T . (3.1.11)

Only keeping the rn+1 singular values larger than some tolerance ϵ > 0, redefine the

updated low-rank solution

Vx,n+1 := Vx,n+1U:,1:rn+1 , Sn+1 := Σ1:rn+1,1:rn+1 , Vy,n+1 := Vy,n+1V:,1:rn+1 .

98

3.1.2.2 Dynamical low-rank (DLR) methods

Dynamical low-rank (DLR) methods are quickly becoming a popular way to

evolve high-dimensional time-dependent PDEs [32, 45, 63, 65, 125]. Since this disser-

tation is only concerned with order-2 tensors, we just consider the DLR framework

for the two-dimensional case. However, these methods naturally extend to high-order

tensors and related tensor decompositions [128].

Broadly speaking, the DLR framework factors the time-dependent tensor into

a tensor product of basis functions from each dimension, together with a transfer

matrix that stores the coefficients. Take for example the singular value decomposition

(3.1.1). The singular vectors (i.e., orthonormal basis vectors) can be thought of as time

dependent basis functions per dimension, and the singular values can be thought of

as time dependent coefficients. Assuming the solution/tensor has low-rank structure,

the bases can be evolved in a dynamical way. In this subsection, we review the three

equations that form the foundation of the DLR framework. There are various robust

integrators developed for the DLR framework for different individual needs, and we

leave their discussion to the literature.

We present the DLR formulation applied to equation (3.0.2), although the DLR

formulation applied to other equations follows similarly. The DLR scheme is built upon

an assumption on the low-rank approximation for the solution,

u(x, y, t) =
r∑

i=1

r∑
j=1

V x
i (x, t)Sij(t)V

y
j (y, t), (3.1.12)

where {V x
i (x, t) : i = 1, 2, ..., r} and {V y

j (y, t) : i = 1, 2, ..., r} are orthonormal time-

dependent bases in the x− and y−dimensions, respectively. If we were to discretize

equation (3.1.12) in space, the matrix analogue might look like the SVD. They are not

the same since S ∈ Rr×r need not be diagonal, although it is invertible.

Continuing with the continuous low-rank approximation (3.1.12), define the

99

auxiliary bases

KJ(x, t) =
r∑

i=1

V x
i (x, t)SiJ(t), J = 1, 2, ..., r, (3.1.13a)

LI(y, t) =
r∑

j=1

SIj(t)V
y
j (y, t), I = 1, 2, ..., r. (3.1.13b)

Projecting equation (3.0.2), the DLR approach solves the following three equa-

tions:
∂KJ

∂t
(x, t) =

〈
RHS, V y

J

〉
y
, (3.1.14a)

∂LI

∂t
(y, t) = ⟨RHS, V x

I ⟩x , (3.1.14b)

∂SIJ

∂t
(t) =

〈
⟨RHS, V x

I ⟩x , V
y
J

〉
y
, (3.1.14c)

where RHS is the righthand side of the equation ut = RHS, and ⟨·, ·⟩x and ⟨·, ·⟩y
denote the L2 inner products in x and y, respectively. After some straightforward

algebra, equations (3.1.14) simplify to the following three equations:

∂KJ

∂t
(x, t) = d21

∂2KJ

∂x2
+

r∑
j=1

cyjJKj, (3.1.15a)

∂LI

∂t
(y, t) =

r∑
i=1

cxiILi + d22
∂2LI

∂y2
, (3.1.15b)

∂SIJ

∂t
(t) =

r∑
i=1

cxiISiJ +
r∑

j=1

cjJSIj, (3.1.15c)

where

cyjJ =

〈
d22
∂2V y

j

∂y2
, V y

J

〉
y

, (3.1.16a)

cxiI =

〈
d21
∂2V x

i

∂x2
, V x

I

〉
x

. (3.1.16b)

The order and way in which one solves these three equations (3.1.14) varies

100

depending on the DLR method. Traditionally, the K equation is solved, followed by

the S equation, followed by the L equation [65, 125]. However, evolving K inherently

evolves V x and S, and evolving L inherently evolves V y and S. Performing the K,

S and L steps in this order evolves S over three time-steps. So, the S step is solved

backwards in time so that S is evolved by a single time-step in total. This of course

becomes complicated and raises concerns when dealing with diffusion. This led to

the unconventional integrator that solves the K and L steps simultaneously, and then

solves for S [33]. The K and L steps only keep the updated bases and toss the updated

S, leaving the evolution of S to only come from the S step.

We leave further discussion of DLR methods to the literature [32, 33, 45, 63, 65,

105, 125]. One important note to make is that these DLR methods traditionally project

and then discretize, that is, they project the continuous model and then discretize to

solve for K, L and S. After discretizing and solving for the updated auxiliary bases

Kn+1 ∈ RNx×r and Ln+1 ∈ RNy×r, one can recover the updated bases Vx ∈ RNx×r and

Vy ∈ RNy×r using the reduced QR factorization (3.1.4),

Kn+1 = QR =: Vx,n+1Sn+1
K ,

Ln+1 = QR =:
(
Sn+1
L (Vx,n+1)T

)T
.

Although Sn+1
K and Sn+1

L are updated approximations of S(t = tn+1), they were evolved

while only considering a projection in a single dimension. Hence, Sn+1 should also be

evolved using equation (3.1.15c) since the differential equation is projected in both

directions. The updated solution is then

Un+1 = Vx,n+1Sn+1(Vy,n+1)T .

3.1.3 von Neumann stability analysis

The von Neumann analysis is a tool for determining the stability of linear nu-

merical methods for linear problems, e.g., equation (3.0.2). Our proposed method

101

constructs a low-rank scheme based on traditional implicit time integrators for solv-

ing the diffusion equation. As such, we review the von Neumann stability analysis

of the time integrators of interest to assess their stability properties and to predict

the behavior of their numerical solutions. For linear problems with periodic boundary

conditions, assume

un(x) =
(
α(k)

)n
eikx, for all k, (3.1.17)

where k is the wave number, n is the number of time-steps, and α(k) is the amplification

factor. Here, we are only concerned with investigating the numerical stability of various

time discretizations, so we consider the semi-discrete solution un(x).

Theorem 3.2 (von Neumann Stability Analysis [119]). A linear numerical scheme is

stable if and only if |α(k)| ≤ 1, for all k.

The implicit low-rank time integrator presented in this chapter is investigated

under four different time discretizations: backward Euler, Crank-Nicolson, second-

order backward differentiation formula, and second-order diagonally implicit Runge-

Kutta. As the numerical tests will reveal, the amplification factor reveals a lot about

the expected behavior of the error. Even if the von Neumann analysis indicates

(un)conditional stability, negative values of α for large wave numbers |k| ≫ 0 might

result in ringing behavior and oscillations since the sign of solution (3.1.17) will al-

ternate with each time-step. This ringing behavior is nonideal and could affect the

observed error and convergence. So, we present the von Neumann analysis of those

four time-stepping methods here. For the sake of simplifying the algebra, we shall

assume in this section an isotropic (constant) diffusion tensor D = DI; in this case

equation (3.0.1) is the heat equation.

3.1.3.1 Backward Euler (bE)

The backward Euler method for solving equation (3.0.1) is

un+1 − un

∆t
= L(un+1, tn+1;x), (3.1.18)

102

where L(u, t;x) = D∇2u. Plugging in the form (3.1.17),

αn+1eikx − αneikx

∆t
+ k2Dαn+1eikx = 0.

Solving for the amplification factor yields

α(k) =
1

1 + k2D∆t
. (3.1.19)

Clearly |α(k)| ≤ 1 for all k, and so method (3.1.18) is unconditionally stable. Under

a convenient change of coordinates α(k) = A(ξ =
√
k2D∆t), we plot the amplification

factor below.

Figure 3.1: Plotting the amplification factor for backward Euler method applied to the
heat equation.

Notice that the amplification factor is always positive and decays rapidly to zero.

This positivity implies that backward Euler applied to equation (3.0.1) is immune to

oscillations.

103

3.1.3.2 Crank-Nicolson (CN)

The Crank-Nicolson method for solving equation (3.0.1) is

un+1 − un

∆t
=

1

2
L(un+1, tn+1;x) +

1

2
L(un, tn;x), (3.1.20)

where L(u, t;x) = D∇2u. Plugging in the form (3.1.17),

αn+1eikx − αneikx

∆t
+
k2D

2
(αn+1eikx + αneikx) = 0.

Solving for the amplification factor yields

α(k) =

(
1− k2D∆t

2

)/(
1 +

k2D∆t

2

)
. (3.1.21)

Clearly |α(k)| ≤ 1 for all k, and so method (3.1.20) is unconditionally stable. Under

a convenient change of coordinates α(k) = A(ξ =
√
k2D∆t), we plot the amplification

factor below.

Figure 3.2: Plotting the amplification factor for Crank-Nicolson method applied to the
heat equation.

104

Notice that the amplification factor is negative for k >
√

2
D∆t

(or ξ >
√
2), and

α→ −1 as |k| → ∞. This negativity implies that Crank-Nicolson applied to equation

(3.0.1) might suffer from oscillations if enough modes are excited. To investigate this

further we consider two time scales: ∆t ∼ D∆x2/2 and ∆t≫ D∆x2/2.

If ∆t ∼ D∆x2/2, then α(k) = 0 when k = +

√
2

D∆t
∼ 2

D∆x
. In other words,

when the time-stepping size is very small, the amplification factor will be positive

for several wave numbers that roughly fall within − 2
D∆x

< k < 2
D∆x

. Assuming the

solution does not excite more than 2
D∆x

modes –which is a reasonable assumption–

then Crank-Nicolson will not suffer from oscillations.

However, if ∆t ≫ D∆x2/2, then α(k) = 0 when k = +

√
2

D∆t
≪ 2

D∆x
. In other

words, when the time-stepping size is relatively large (e.g., O(∆x)), the amplification

factor will be negative for several wave numbers +

√
2

D∆t
< |k| < 2

D∆x
. For solutions

that excite modes in this region, Crank-Nicolson will suffer from ringing behavior and

oscillations, hence affecting the observed error and convergence.

3.1.3.3 Backward differentiation formula (BDF2)

The second-order backward differentiation formula (BDF2) for solving equation

(3.0.1) is
1

∆t

(
un+2 − 4

3
un+1 +

1

3
un
)

=
2

3
L(un+2, tn+2;x), (3.1.22)

where L(u, t;x) = D∇2u. Plugging in the form (3.1.17),

1

∆t

(
αn+2eikx − 4

3
αn+1eikx +

1

3
αneikx

)
+

2k2D

3
αn+2eikx = 0.

Solving for the amplification factor yields

α±(k) =
2±
√
1− 2k2D∆t

3 + 2k2D∆t
. (3.1.23)

Even for the complex variable case, |α±(k)| ≤ 1 for all k, and so method (3.1.22) is

unconditionally stable. Under a convenient change of coordinates α±(k) = A±(ξ =

105

√
k2D∆t), we plot the amplification factors below. Since the real parts of the amplifi-

cation factors are always positive and |α±(k)| ≤ 1 for all k, we do not have to worry

about negative values. Hence, we do not have to worry about ringing behavior and

oscillations. But to better visualize the behavior of the amplification factors, we plot

their absolute values.

Figure 3.3: Plotting the absolute value of the amplification factor A+(ξ) for BDF2
applied to the heat equation.

Notice that the absolute value of the amplification factor decays rapidly to zero,

and one can clearly see the same is true for the real part of the amplification factor.

Although we plotted the absolute value of the amplification factors to account for the

imaginary components, the real components of the amplification factors are positive.

This positivity implies that BDF2 applied to equation (3.0.1) is immune to oscillations.

3.1.3.4 Diagonally implicit Runge-Kutta (DIRK2)

We consider two second-order diagonally implicit Runge-Kutta (DIRK) methods

–one by Pareschi and Russo that is L-stable [138] and another that is stiffly-accurate

[55]– whose Butcher tables are respectively given by

106

Figure 3.4: Plotting the absolute value of the amplification factor A−(ξ) for BDF2
applied to the heat equation.

L-stable DIRK2 [138]

Let γ = 1− 1/
√
2

Stiffly-accurate DIRK2 [55]

Let γ = 1− 1/
√
2

γ γ 0

1-γ 1− 2γ γ

1/2 1/2

γ γ 0

1 1− γ γ

1− γ γ

For a review of implicit Runge-Kutta methods see Section 2.1.2. It turns out that

both DIRK2 methods applied to equation (3.0.1) have the same amplification fac-

tor, so we only present the amplification factor for the L-stable DIRK2 method. The

107

L-stable DIRK2 method for solving equation (3.0.1) is

un+1 = un +∆t

(
1

2
K1 +

1

2
K2

)
, (3.1.24)

K1 = L(un +∆t(γK1), t
n + γ∆t;x), (3.1.25)

K2 = L(un +∆t
(
(1− 2γ)K1 + γK2

)
, tn + (1− γ)∆t;x). (3.1.26)

where L(u, t;x) = D∇2u. We will need to solve for K1 and K2 implicitly, which

in one-dimension requires two boundary conditions: K(x = 0) = K(x = 2π) and

K ′(x = 0) = K ′(x = 2π), where we let K denote K1 or K2 depending on the stage.

One can easily verify that under these boundary conditions, the solution to the ordinary

differential equation

(
D∆tγ

d2

dx2
− 1

)
K = −eikx ⇐⇒ K =

(
1−D∆tγ

d2

dx2

)−1

eikx (3.1.27)

is

K(x) =
1

1 + k2D∆tγ
eikx. (3.1.28)

After a bit of tedious algebra, the equations for K1 and K2 are

K1 = D
(
1−D∆tγ∇2

)−1∇2un, (3.1.29)

K2 = K1 +D∆t(1− 2γ)
(
1−D∆tγ∇2

)−1∇2K1. (3.1.30)

Plugging in the form (3.1.17) and by equation (3.1.28),

K1 = −αnk2D
(
1−D∆tγ∇2

)−1
eikx

=
−αnk2D

1 + k2D∆tγ
eikx,

(3.1.31a)

K2 =
−αnk2D

1 + k2D∆tγ
eikx +

αnk4D2∆t(1− 2γ)

1 + k2D∆tγ

(
1−D∆tγ∇2

)−1
eikx

=
−αnk2D

1 + k2D∆tγ
eikx +

αnk4D2∆t(1− 2γ)

(1 + k2D∆tγ)2
eikx

(3.1.31b)

108

Plugging in the form (3.1.17) and using equation (3.1.31),

αn+1eikx = αneikx − αnk2D∆t

1 + k2D∆tγ
eikx +

αn(k2D∆t)2(1− 2γ)

2(1 + k2D∆tγ)2
eikx. (3.1.32)

Solving for the amplification factor yields

α(k) = 1− k2D∆t

1 + k2D∆tγ
+

(k2D∆t)2(1− 2γ)

2(1 + k2D∆tγ)2
. (3.1.33)

Although not obvious without plotting the solution, we find that |α(k)| ≤ 1 for all

k, and so method (3.1.24) is unconditionally stable. Under a convenient change of

coordinates α(k) = A(ξ =
√
k2D∆t), we plot the amplification factor below.

Figure 3.5: Plotting the amplification factor for DIRK2 applied to the heat equation.

Notice that the amplification factor has negative values, but the negative values

decay to zero as |k| → ∞. Moreover, the negative values are relatively small (> −2.2).

As with Crank-Nicolson method, we consider two time scales: ∆t ∼ D∆x2/2 and

∆t≫ D∆x2/2.

If ∆t ∼ D∆x2/2, then α(k) = 0 when k = +

√
1+

√
2

D∆t
∼ 2(1+

√
2)

∆x
. In other words,

109

when the time-stepping size is very small, the amplification factor will be positive for

several wave numbers −2(1+
√
2)

∆x
< k < 2(1+

√
2)

∆x
. Assuming the solution does not excite

more than 2(1+
√
2)

∆x
modes –which is a reasonable assumption– then method (3.1.24) will

not suffer from oscillations.

If ∆t≫ D∆x2/2, then α(k) = 0 when k = +

√
1+

√
2

D∆t
≪ 2(1+

√
2)

∆x
. But according to

Figure 3.5, we might expect the most negative values of α to fall within |k| < 2(1+
√
2)

∆x
.

Beyond which point, although the amplification factor will be negative for higher wave

numbers, their contributions will be quickly decaying to zero. So, when the time-

stepping size is relatively large (e.g., O(∆x)), we can still expect method (3.1.24) to

be immune to oscillations.

3.2 The implicit low-rank scheme

The proposed scheme solves the diffusion equation using traditional implicit

time integrators by updating the bases in each dimension. We use several implicit

time-discretizations suitable for stiff terms. We first present a first-order scheme with

backward Euler, followed by a second-order scheme with stiffly-accurate second-order

DIRK. Other second-order schemes using Crank-Nicolson and BDF2 are included in

the appendices. At the continuous level, we assume the solution takes the same form

as in the DLR framework (3.1.12),

u(x, y, t) =
r∑

i=1

r∑
j=1

V x
i (x, t)Sij(t)V

y
j (y, t).

We remark that unlike DLR methods in which the equation is projected and then dis-

cretized, our proposed method discretizes and then projects the equation.

Discretizing the solution.

We discretize the spatial domain [0, 1] × [0, 1] using Nx and Ny evenly spaced

110

grid points in each dimension. The separated one-dimensional meshes are

0 = x1 < x2 < ... < xNx−1 < xNx = 1,

0 = y1 < y2 < ... < yNy−1 < yNy = 1,

where ∆xi := xi − xi−1 = ∆x for i = 2, 3, ..., Nx, and ∆yj := yj − yj−1 = ∆y for

j = 2, 3, ..., Ny. At the semi-discrete level, the solution takes the form

U(t) = Vx(t)S(t)(Vy(t))T , (3.2.1)

where U(t) ∈ RNx×Ny , the orthonormal columns of Vx(t) ∈ RNx×r are the basis vectors

for the x−dimension, the orthonormal columns of Vy(t) ∈ RNy×r are the basis vectors

for the y−dimension, and S(t) ∈ Rr×r. This is not the same as the SVD since the

entries along the diagonal of S(t) are not necessarily ordered. The rank of the solution

(3.2.1) is also a function of time, r(t). Orthonormality of the column vectors is defined

with the discrete unweighted ℓ2 inner product (i.e., dot product),

⟨vx
i1,v

x
i2⟩ := vx

i1 · vx
i2 = δi1,i2.

The semi-discrete equation to solve is

d

dt

(
VxS(Vy)T

)
= DxVxS(Vy)T +VxS(DyVy)T , (3.2.2)

where we use second-order centered differences to discretize the diffusive terms,

Dx =
d21
∆x2

tridiag(1,−2, 1), Dy =
d22
∆y2

tridiag(1,−2, 1).

The results herein assume homogeneous Dirichlet boundary conditions, so we

only solve equation (3.2.2) on the interior nodes. Other boundary conditions would

require a slight modification of Dx and Dy, as well as the addition of a source term if

111

the boundary conditions are nonhomogeneous.

In the following sections, we discretize the time-interval [0, Tf] using Nt + 1

evenly distributed time-steps,

0 = t0 < t1 < ... < tNt−1 < tNt = Tf ,

where ∆tn := tn − tn−1 = ∆t for n = 1, 2, ..., Nt.

3.2.1 A first-order scheme using backward Euler

The first-order backward Euler method (3.1.18) is a one-stage Runge-Kutta

method,

Un+1 = Un +∆tL(Un+1; tn+1), (3.2.3)

where L(U ; t) = (d21∂
2
x + d22∂

2
y)U . Using backward Euler to discretize equation (3.2.2),

we update the low-rank solution using the unconventional DLR framework [33]; our

treatment will differ from the unconventional DLR method once we consider higher-

order time-integrators. The K and L steps will discretize, freeze and project the differ-

ential equation in each dimension to compute the updated bases. The S step will use

the updated bases from the K and L step to project the differential equation in both

dimensions, and then compress the solution.

K and L steps

Discretizing equation (3.2.2) using backward Euler,

Vx,n+1Sn+1(Vy,n+1)T −∆tDxVx,n+1Sn+1(Vy,n+1)T

−∆tVx,n+1Sn+1(DyVy,n+1)T = Vx,nSn(Vy,n)T .
(3.2.4)

Freezing the solution in the y−dimension, we can update the x−basis Vx; and

vice versa. Looking at equation (3.2.4), freezing the solution in one dimension is chal-

lenging because doing so requires knowledge of the frozen basis at times tn and tn+1.

112

By first approximating the one-dimensional bases at the future time with approxi-

mate bases, Vx,⋆ and Vy,⋆, we can then solve for the updated one-dimensional bases,

Vx,n+1 and Vy,n+1. The approximate bases are defined using known information. The

approximate bases for the first-order scheme are defined by

Vx,⋆ := Vx,n ∈ RNx×rn , (3.2.5a)

Vy,⋆ := Vy,n ∈ RNy×rn . (3.2.5b)

The approximate bases used to freeze the solution introduce a temporal error

since they are approximating the bases at time tn+1. Using only the current bases

at time tn introduces a O(∆t) error. This is okay since we are computing a first-

order approximation. However, higher-order time integrators will require much richer

approximate bases.

After substituting Vy,n+1 with Vy,⋆, projecting equation (3.2.4) onto the column

space of Vy,⋆ yields the Sylvester equation

(I−∆tDx)Kn+1 +Kn+1
(
−∆t(DyVy,⋆)TVy,⋆

)
= Kn, (3.2.6)

where Kn = Vx,nSn. Similarly, substituting Vx,n+1 with Vx,⋆ and projecting equation

(3.2.4) onto the column space of Vx,⋆ yields the Sylvester equation

(I−∆tDy)Ln+1 + Ln+1
(
−∆t(DxVx,⋆)TVx,⋆

)
= Ln, (3.2.7)

where Ln =
(
Sn(Vy,n)T

)T
= Vy,n(Sn)T .

After solving the Sylvester equations (3.2.6), (3.2.7) for Kn+1 and Ln+1, one

can easily compute the updated orthonormal bases. Recall that the column spaces of

Kn+1 and Ln+1 are the same as the column spaces of Vx,n+1 and Vy,n+1, respectively.

Computing the reduced QR factorizations Kn+1 = QxRx and Ln+1 = QyRy, the

113

updated bases are defined by

Vx,n+1 := Qx, Vy,n+1 := Qy.

Remark 3.9. As discussed later in Section 3.2.3.1, diagonalizing a Sylvester equation

AX + XB = C leads to greater efficiency. By “diagonalizing a Sylvester equation”

we mean diagonalizing the differential operator such that A is diagonal. Since the dif-

ferential operator in equation (3.0.2) is so nice, this diagonalization is straightforward.

One can compute the eigenvalue decomposition of the discrete Laplacian and then eas-

ily diagonalize I −∆tDx and I −∆tDy. Without loss of generality, let WxZx(Wx)T

be the diagonalization of I − ∆tDx. Defining K̃n+1 := (Wx)TKn+1, equation (3.2.6)

reduces to

ZxK̃n+1 + K̃n+1
(
−∆t(DyVy,⋆

1)TVy,⋆
1

)
= (Wx)TKn. (3.2.8)

Solving equation (3.2.8) for K̃n+1 leads to Kn+1 = WxK̃n+1. Similarly, we can di-

agonalize equation (3.2.7). It is important to note that diagonalizing the Sylvester

equations is only advantageous if the differential operator is time-independent. Other-

wise, an eigenvalue decomposition will need to be computed for each time-step rather

than once and for all.

S step

Projecting equation (3.2.4) in both dimensions onto the column spaces of the

updated bases Vx,n+1 and Vy,n+1,

Sn+1 −∆t(Vx,n+1)TDxVx,n+1Sn+1−∆tSn+1(DyVy,n+1)TVy,n+1

= (Vx,n+1)TVx,nSn(Vy,n)TVy,n+1.
(3.2.9)

Since −∆t(Vx,n+1)TDxVx,n+1 and −∆t(DyVy,n+1)TVy,n+1 are symmetric rn ×

rn matrices, we transform equation (3.2.9) into a more efficient form. Computing the

114

eigenvalue decompositions of the real symmetric matrices

−∆t(Vx,n+1)TDxVx,n+1 = QxΛx(Qx)T , −∆t(DyVy,n+1)TVy,n+1 = QyΛy(Qy)T

requires O(r3) flops since the matrices are symmetric but not tridiagonal [76]. Letting

S̃n+1 = (Qx)TSn+1Qy, (3.2.10a)

B̃ = (Vx,n+1Qx)TVx,nSn(Vy,n)TVy,n+1Qy, (3.2.10b)

equation (3.2.9) becomes the Sylvester equation

(I+Λx)S̃n+1 + S̃n+1Λy = B̃. (3.2.11)

Solving equation (3.2.11) has a relatively small computational complexity. The updated

Sn+1 is obtained by

Sn+1 = QxS̃n+1(Qy)T .

Compressing the updated solution Vx,n+1Sn+1(Vy,n+1)T is done via the SVD.

Following the step-and-truncate procedure in Section 3.1.2.1, let UΣVT be the SVD

of Sn+1 and rn+1 be the number of singular values larger than some small tolerance

ϵ > 0. Redefine the bases to be

Vx,n+1 := Vx,n+1U:,1:rn+1 , Sn+1 := Σ1:rn+1,1:rn+1 , Vy,n+1 := Vy,n+1V:,1:rn+1 .

(3.2.12)

The presented first-order scheme used the backward Euler discretization. The

K and L steps discretized the equation using the first-order implicit integrator, froze

the solution in one dimension at a time, and projected the equation onto the spaces

spanned by approximate bases. The S step then projected the equation onto the

space spanned by both pre-compressed updated bases to update the transfer matrix,

and compressed the solution by a step-and-truncate procedure. The non-diagonalized

115

first-order scheme with backward Euler is outlined in Algorithm 3.1. We present the

algorithm for homogeneous Dirichlet boundary conditions, but other boundary condi-

tions would only require slight modifications.

To initialize the scheme, we compute the full SVD of U0, only keeping the first

r0 singular values and their corresponding singular vectors. In this initialization we

do not truncate based on a tolerance ϵ > 0. Numerical tests showed that keeping a

larger/richer initial basis is important for capturing the immediate dynamics of diffu-

sion problems. Even if the initial condition is theoretically low-rank, the immediate

diffusion dynamics could cause the rank to instantaneously increase. This requires

a richer initial basis that can appropriately capture the solution at the future time

t = t1. As such, we keep the first r0 = ceil(max(Nx, Ny)/N0) singular vectors/values

of the full SVD of the initial condition, for some N0. Although not rigorously justified,

we found N0 = 3 to produce a sufficiently rich enough basis. This high-rank initial

condition does not dramatically affect the overall computational complexity since it is

only for a single time-step, whereas every subsequent time-step truncates the solution

by tolerance ϵ > 0. We typically set ϵ ∈ [1.0E − 12, 1.0E − 08] except for problems

where the solution decays very rapidly and might require a smaller ϵ.

As per Remark 3.9, the appropriate diagonalizations must also be computed

when using the diagonalized variant of the first-order scheme. Assuming a time-

independent differential operator, this should only need to be performed once in the

initialization.

Algorithm 3.1. First-order scheme with backward Euler

Inputs: Un = Vx,nSn(Vy,n)T ; rank rn.

Outputs: Un+1 = Vx,n+1Sn+1(Vy,n+1)T ; rank rn+1.

K and L Steps

Let subscript int denote the interior nodes.

1a. Let Vx,n+1 = 0 ∈ RNx×rn and Vy,n+1 = 0 ∈ RNy×rn .

116

1b. Define Vx,⋆ and Vy,⋆ according to equation (3.2.5).

1c. Compute Kn+1
int and Ln+1

int from equations (3.2.6) and (3.2.7).

1d. Compute reduced QR factorization Kn+1
int = QxRx, set V

x,n+1(2 : Nx − 1, :) = Qx.

1e. Compute reduced QR factorization Ln+1
int = QyRy, set V

y,n+1(2 : Ny − 1, :) = Qy.

S Step

2a. Compute S̃n+1 from equation (3.2.11).

2b. Compute Sn+1 from S̃n+1.

2c. Redefine Vx,n+1, Sn+1, Vy,n+1 and rn+1 according to equation (3.2.12).

3.2.2 A second-order scheme using DIRK2

The scheme formulation using second-order time-discretizations is a simple ex-

tension of the first-order scheme. Since DIRK2 has two stages, there will be two

K − L − S phases; herein lies the difference between our proposed algorithm and the

unconventional DLR method. To accommodate higher-order multistage DIRK inte-

grators, the updated bases from the first K − L − S phase will be used to define the

approximate bases for the secondK−L−S phase. We present the second-order scheme

using the stiffly-accurate DIRK2 [55]. The second-order schemes using CN and BDF2

follow similarly and are included in Appendices B and C, respectively. The second-

order diagonally implicit Runge-Kutta (DIRK2) method is a two-stage Runge-Kutta

method,

U (1) = Un + γ∆tL(U (1); t(1)), (3.2.13a)

Un+1 = Un + (1− γ)∆tL(U (1); t(1)) + γ∆tL(Un+1; tn+1), (3.2.13b)

where L(U ; t) = (d21∂
2
x + d22∂

2
y)U , t

(1) = tn + γ∆t and γ = 1 − 1/
√
2. Using stiffly-

accurate DIRK2 to discretize equation (3.2.2), we can update the bases of the low-rank

solution in a two-stage K − L− S fashion similar to the first-order scheme.

117

K − L− S phase 1

Observe that the first stage of DIRK2 is simply the backward Euler integrator

over a time-step of ∆t(1) = γ∆t from time tn to t(1). Following Algorithm 3.1, we

obtain the low-rank solution U(1) = Vx,(1)S(1)(Vy,(1))T of rank r(1).

K − L− S phase 2: K and L steps

Discretizing equation (3.2.2) using the second stage formula of DIRK2,

Vx,n+1Sn+1(Vy,n+1)T − γ∆tDxVx,n+1Sn+1(Vy,n+1)T

− γ∆tVx,n+1Sn+1(DyVy,n+1)T = RHS,
(3.2.14)

RHS = Vx,nSn(Vy,n)T + (1− γ)∆tDxVx,(1)S(1)(Vy,(1))T

+ (1− γ)∆tVx,(1)S(1)(DyVy,(1))T .
(3.2.15)

Looking at equation (3.2.4), freezing the solution one dimension at a time re-

quires knowledge of the frozen bases at times tn, t(1) and tn+1. We know the bases

at times tn and t(1), but not at time tn+1. The approximate bases 3.2.5 used in the

first-order scheme will not suffice since the O(∆t) error will destroy the desired second-

order accuracy. However, we can augment the bases from the previous Runge-Kutta

stages to form richer bases that will (hopefully) not destroy the accuracy. Consider

the augmented bases

[
Vx,n | Vx,(1)

]
∈ RNx×(rn+r(1)),

[
Vy,n | Vy,(1)

]
∈ RNy×(rn+r(1)).

These augmented bases span richer spaces that approximate the solution at

time tn+1 using information from the previous stages at times tn and t(1). Assuming

the solution does not change much over a single time-step, the augmented bases might

have several redundancies. Computing the reduced SVDs of the augmented bases, let

Ux be the left singular vectors of
[
Vx,n|Vx,(1)

]
, and Uy be the left singular vectors

of
[
Vy,n|Vy,(1)

]
. Further let rx and ry be the respective number of singular values

118

greater than the same tolerance ϵ. The approximate bases for the second stage of the

second-order scheme are defined by

Vx,⋆ := Ux(:, 1 : r), (3.2.16a)

Vy,⋆ := Uy(:, 1 : r), (3.2.16b)

where r = max(rx, ry). We let the rank be the maximum of rx and ry since we need

the approximate bases to have the same number of (column) vectors.

After substituting Vy,n+1 with Vy,⋆, projecting equation (3.2.14) onto the col-

umn space of Vy,⋆ yields the Sylvester equation

(I− γ∆tDx)Kn+1 +Kn+1
(
−γ∆t(DyVy,⋆)TVy,⋆

)
= (RHS)Vy,⋆, (3.2.17)

where Kn = Vx,nSn. Similarly, substituting Vx,n+1 with Vx,⋆ and projecting equation

(3.2.14) onto the column space of Vx,⋆ yields the Sylvester equation

(I− γ∆tDy)Ln+1 + Ln+1
(
−γ∆t(DxVx,⋆)TVx,⋆

)
= (RHS)TVx,⋆, (3.2.18)

where Ln =
(
Sn(Vy,n)T

)T
= Vy,n(Sn)T .

After solving the Sylvester equations (3.2.17), (3.2.18) for Kn+1 and Ln+1, one

can easily compute the updated orthonormal bases like in the first-order scheme. Com-

puting the reduced QR factorizations Kn+1 = QxRx and Ln+1 = QyRy, the updated

bases are defined by

Vx,n+1 := Qx, Vy,n+1 := Qy.

Remark 3.10. If the diagonalized variant of the second-order scheme is desired, then

the matrices I−γ∆tDx and I−γ∆tDy will need to be diagonalized. Instead of solving

119

equation (3.2.8), the second stage of the second-order scheme will solve

ZxK̃n+1 + K̃n+1
(
−γ∆t(DyVy,⋆

1)TVy,⋆
1

)
= (Wx)T

(
(RHS)Vy,⋆

)
. (3.2.19)

The diagonalized variant of equation (3.2.18) follows similarly. It is important to follow

the order of operations on the righthand side of equation (3.2.19). Doing so will cost

O(N2r) flops for the matrix multiplication; otherwise, the cost will be O(N3).

K − L− S phase 2: S step

Projecting equation (3.2.14) in both dimensions onto the column spaces of the

updated bases Vx,n+1 and Vy,n+1,

Sn+1 − γ∆t(Vx,n+1)TDxVx,n+1Sn+1−γ∆tSn+1(DyVy,n+1)TVy,n+1

= (Vx,n+1)T (RHS)Vy,n+1.
(3.2.20)

Computing the eigenvalue decompositions of the real symmetric matrices

−γ∆t(Vx,n+1)TDxVx,n+1 = QxΛx(Qx)T , −γ∆t(DyVy,n+1)TVy,n+1 = QyΛy(Qy)T

requires O(r3) flops since the matrices are symmetric but not tridiagonal [76]. Letting

S̃n+1 = (Qx)TSn+1Qy, (3.2.21a)

B̃ = (Vx,n+1Qx)T (RHS)Vy,n+1Qy, (3.2.21b)

equation (3.2.20) becomes the Sylvester equation

(I+Λx)S̃n+1 + S̃n+1Λy = B̃. (3.2.22)

Solving equation (3.2.22) has a relatively small computational complexity. The updated

Sn+1 is obtained by

Sn+1 = QxS̃n+1(Qy)T .

120

Compressing the updated solution Vx,n+1Sn+1(Vy,n+1)T is done just like in the

first-order scheme. Let UΣVT be the SVD of Sn+1 and rn+1 be the number of singular

values larger than some small tolerance ϵ > 0. Redefine the bases to be

Vx,n+1 := Vx,n+1U:,1:rn+1 , Sn+1 := Σ1:rn+1,1:rn+1 , Vy,n+1 := Vy,n+1V:,1:rn+1 .

(3.2.23)

We outline the second-order scheme with stiffly-accurate DIRK2 below in Algo-

rithm 3.2. We present the algorithm for homogeneous Dirichlet boundary conditions,

but other boundary conditions would only require slight modifications. The initializa-

tion procedure is the same as for Algorithm 3.1.

Algorithm 3.2. Second-order scheme with stiffly-accurate DIRK2

Inputs: Un = Vx,nSn(Vy,n)T ; rank rn.

Outputs: Un+1 = Vx,n+1Sn+1(Vy,n+1)T ; rank rn+1.

K − L− S Phase 1

Compute the rank r(1) solution U(1) = Vx,(1)S(1)(Vy,(1))T using Algorithm 3.1 over

time-step γ∆t.

K − L− S Phase 2: K and L Steps

Let subscript int denote the interior nodes.

1a. Let Vx,n+1 = 0 ∈ RNx×rn and Vy,n+1 = 0 ∈ RNy×rn .

1b. Construct the augmented bases
[
Vx,n | Vx,(1)

]
and

[
Vy,n | Vy,(1)

]
, and define Vx,⋆

and Vy,⋆ according to equation (3.2.16).

1c. Compute Kn+1
int and Ln+1

int from equations (3.2.17) and (3.2.18).

1d. Compute reduced QR factorization Kn+1
int = QxRx, set V

x,n+1(2 : Nx − 1, :) = Qx.

1e. Compute reduced QR factorization Ln+1
int = QyRy, set V

y,n+1(2 : Ny − 1, :) = Qy.

121

K − L− S Phase 2: S Step

2a. Compute S̃n+1 from equation (3.2.22).

2b. Compute Sn+1 from S̃n+1.

2c. Redefine Vx,n+1, Sn+1, Vy,n+1 and rn+1 according to equation (3.2.23).

3.2.3 Computational complexity

We claim that the proposed implicit low-rank integrators have significant com-

putational savings when solutions have low-rank structure. The computational com-

plexities of the first- and second-order schemes are the same order of magnitude. Since

the second-order scheme has two stages instead of one, its computational complexity

is roughly twice that of the first-order scheme. The computational complexity for each

time-step is dominated by the Sylvester equation. As such, we first outline the expected

cost of solving the Sylvester equation in Algorithms 3.1 and 3.2. Then, we summarize

the computational complexity of the proposed scheme.

3.2.3.1 Computational complexity of solving the Sylvester equation

We discuss the computational complexity required to set up and solve the

Sylvester equation

AX+XB = C,

where A ∈ RN×N , B ∈ Rr×r, C ∈ RN×r and solution X ∈ RN×r. The Bartels-Stewart

algorithm [14] is a popular way to numerically solve Sylvester equations for the two-

dimensional case, with a computational complexity of ∼ 10(N3 + r3) + 5
2
(N2r +Nr2)

flops; the cubic terms come from computing the Schur decompositions of A and B.

Another algorithm is the Hessenberg-Schur variant of the Bartels-Stewart algorithm

[75], with a computational complexity of ∼ 5
3
N3 + 10r3 + 5N2r + 5

2
Nr2 flops; the first

cubic term come from using Householder reflectors on A instead of computing its Schur

decomposition. If A has diagonal structure, then the computational cost is reduced to

O(N2r). The Hessenberg-Schur variant is implemented in the SLICOT library [16, 176]

122

and is used by MATLAB’s control system toolbox. The SLICOT library is built on

LAPACK and BLAS collection [5, 18].

There are two variants of the proposed scheme: (1) solving non-diagonalized

Sylvester equations, e.g., equation (3.2.6), and (2) solving diagonalized Sylvester equa-

tions, e.g., equation (3.2.8). Table 3.1 shows the dominant computational cost to

compute C and solve the Sylvester equation. We show both the full-rank (N ×N) and

low-rank (N×r) systems to demonstrate the computational savings when solutions are

low-rank. In addition, the non-diagonalized and diagonalized variants of the proposed

scheme are compared.

Cost to set up C Cost to solve the Sylvester equation
Full-rank Low-rank Full-rank Low-rank

Non-diagonalized variant O(N3) O(N2r) O(N3) O(N3)
Diagonalized variant O(N3) O(N2r) O(N3) O(N2r)

Table 3.1: The dominant computational cost to set up and solve the Sylvester equa-
tions applicable to the proposed implicit low-rank integrator. The reference Sylvester
equations are equations (3.2.6) and (3.2.8).

As seen in Table 3.1, setting up the Sylvester equations for low-rank solutions

observes quadratic computational complexity compared to cubic computational com-

plexity for full-rank solutions; this is simply from the matrix multiplication. Moreover,

the computational complexity to set up and solve the Sylvester equation in the low-rank

setting with the diagonalized variant is dominated by O(N2r).

Futher note that the computational complexity for solving the Sylvester equa-

tion with the non-diagonalized variant is O(N3) for both full-rank and low-rank solu-

tions. Even though the full-rank and low-rank solutions both require cubic complexity,

the low-rank solution is still advantageous. Recall the computational complexity of

the Hessenberg-Schur variant of the Bartels-Stewart algorithm. The computational

complexity to solve a Sylvester equation for a full-rank N × N solution is ∼ 115
6
N3

flops, or rather, roughly ∼ 19N3 flops. Whereas, the computational complexity to

solve a Sylvester equation for a low-rank N × r solution is dominated by ∼ 5
3
N3 flops.

123

Despite both having a computational complexity of O(N3) flops, the low-rank solution

is roughly ten times cheaper than the full-rank solution.

3.2.3.2 Computational complexity of the proposed scheme

We provide a very rough estimate of the computational complexity for Algorithm

3.1; the computational complexity for Algorithm 3.2 is similar. Any computation

performed outside the time-stepping loop is not considered (e.g., computing the full

SVD of the initial condition U0 for the initialization, and computing the error after the

final time-step). Since it is difficult to determine the exact computational complexities

of the algorithms used by LAPACK and BLAS for the MATLAB functions svd, qr,

and sylvester, we use the computational complexities outlined in this chapter as rough

estimates.

For simplicity we assume N = Nx = Ny and r = rn ≪ N . Computing the

matrices for the Sylvester equations is dominated by O(N2r) flops. Solving the non-

diagonalized Sylvester equations (3.2.6) and (3.2.7) is dominated by O(N3) flops; solv-

ing the diagonalized Sylvester equation (3.2.8) is dominated by O(N2r) flops. All other

reduced QR factorizations, reduced SVDs and matrix multiplications are dominated by

O(Nr2) flops. All together, the total computational complexity of Algorithm 3.1 (for

a single time-step) is roughly dominated by O(N3) flops if using the non-diagonalized

variant of the algorithm. Otherwise, the total computational complexity of Algorithm

3.1 (for a single time-step) is roughly dominated by O(N2r) flops if using the diago-

nalized variant.

Remark 3.11. (Initializing the scheme). The diagonalized variant of the proposed

scheme requires the diagonalization of I−∆tDx and I−∆tDy. The computational cost

of this diagonalization is O(N3), but it only needs to be performed once if the diffusion

operatorsDx, Dy are time-independent and ∆t remains fixed. Furthermore, initializing

the proposed scheme requires computing the full SVD of the initial condition, which

also has a computational cost of O(N3). Given that most practical simulations set at

mostN ∼ 1000 and run to large final times, meaning many time-steps, the initialization

124

cost is very tolerable. A decent portion of the CPU runtime for small final times is

attributed to the intialization procedure, but for large final times the CPU runtime is

dominated by the time-stepping.

3.3 Numerical tests

In this section, we compare the performance of the first- and second-order

schemes. The CPU runtime and spatial and temporal convergence are presented for

various initial conditions. We solve equation (3.0.2),

ut = d21uxx + d22uyy, (x, y) ∈ (0, 1)2, t > 0, (3.3.1)

for constants d1, d2 > 0. Homogeneous Dirichlet boundary conditions are assumed,

and the final time is Tf = 1 unless otherwise stated. The three initial conditions we

consider are

u0(x, y) = 0.5exp
[
−400

(
(x− 0.3)2 + (y − 0.35)2

)]
+ 0.8exp

[
−400

(
(x− 0.65)2 + (y − 0.5)2

)]
,

(3.3.2)

u0(x, y) =
3∑

m=1

sin (mπx) sin (mπy), (3.3.3)

u0(x, y) =
sin (πx) sin (πy)

1 + (x− 0.5)2 + (y − 0.5)2
, (3.3.4)

where initial conditions (3.3.2)-(3.3.4) are order-2 tensors of theoretical rank one, rank

two and infinite rank, respectively. Initial condition (3.3.2) is used for diffusion co-

efficients d1 = d2 = 1/2; initial conditions (3.3.3) and (3.3.4) are used for diffusion

coefficients d1 = 1/2 and d2 = 1/3. To enforce homogeneous Dirichlet boundary con-

ditions, the scaling of the Gaussians/Maxwellians in initial condition (3.3.2) is large

enough so that the function is less than machine precision on the boundary.

The reasons for using initial condition (3.3.2) are: it activates several Fourier

modes, and it represents distribution functions commonly seen in some kinetic models.

125

The reason for using initial condition (3.3.3) is it has similar structure to the solution

since it is just the first three Fourier modes. The reasons for using initial condition

(3.3.4) are: it has theoretical infinite rank, and the numerator offers some structure

similar to the first Fourier mode.

Recall that we do not truncate the initial condition based on a tolerance ϵ > 0.

We found that a larger/richer initial basis was necessary to observe spatial convergence.

This is because although the initial condition might be low-rank, the initial dynamics of

diffusion could make the rank increase instantaneously; for some initial conditions, this

jump in rank could be quite large. In order to capture the correct initial dynamics, the

initial time-step needs a richer approximate basis than the theoretical low-rank basis

of the initial condition. For instance, initial condition (3.3.2) is a rank-2 tensor, but

those two basis functions will not provide a rich enough (approximate) basis for the

higher-rank solution at the next time-step. As such, we keep several singular vectors

from the full SVD of the initial condition; the singular values that are theoretically

zero are on the order of 1.0E− 15 when computed in MATLAB. The initial rank is set

as r0 = ceil(N/N0) for integer N0 = 3 unless otherwise stated.

The general Fourier series solution of equation (3.0.2) is

u(x, y, t) =
∞∑
n=1

∞∑
m=1

αnmexp
(
−(d21n2 + d22m

2)π2t
)
sin (nπx) sin (mπy), (3.3.5)

where αnm = 4
∫ 1

0

∫ 1

0
u0(x, y) sin (nπx) sin (mπy)dxdy. The solution corresponding to

initial condition (3.3.3) falls out naturally by orthogonality. We compute the Fourier

coefficients for the solutions corresponding to initial conditions (3.3.2) and (3.3.4) in

Mathematica® and only keep the coefficients for which αnmexp
(
−(d21n2 + d22m

2)π2t
)

is less than machine precision.

There are several sources of error. Spatial error is due to the second-order

centered-difference approximation of the second-derivatives and the tolerance used to

truncate the singular values in the basis removal procedure. Temporal error is due to

126

the time-discretization and the approximate bases. We compute the discrete ℓ1 error,

∥U−Uexact∥1 = ∆x∆y
Nx∑
i=1

Ny∑
j=1

∣∣U(i, j)−Uexact(i, j)
∣∣. (3.3.6)

To help better track the computational complexity, all numerical results included in

this section assume Nx = Ny = N .

3.3.1 CPU runtime

In this subsection, we present the CPU runtimes of the first- and second-order

schemes. We compare the runtimes for both variations of the algorithms using the

diagonalized and non-diagonalized Sylvester equations. To help identify how much

of the computational cost is due to each step, we break down the runtimes for the

initialization and time-stepping phases. The initialization phase for the algorithm with

diagonalization is further broken down into the time spent computing the full SVD of

the initial condition and the eigenvalue decompositions. The time-stepping phase is

broken down into the time spent on the first time-step and the average runtime spent

per subsequent time-step. For both phases we then show the change in runtime after

each refinement,

log2(ratio of the runtimes)

to see the quadratic O(N2r) or cubic O(N3) computational complexity. We do not

include the cost of computing the ℓ1 error. The CPU runtimes were computed in

MATLAB R2019b on a Dell Inspiron 5570 laptop with the 8th Generation Intel®

CoreTM i7-8550U Processor and 16GB RAM.

Example 3.1. (A benchmark method)

We first present numerical results for a familiar benchmark method, the (clas-

sical) alternating-direction implicit (ADI) method [59, 140]. The results using the

full-rank ADI method will serve as a comparison for the results using the proposed

low-rank scheme. The ADI method used herein uses centered-differences in space and

127

Crank-Nicolson in time. The method is formally second-order in both space and time.

We note that the second-order accuracy in time also comes from a second-order split-

ting error. For the sake of this dissertation, we omit the details of ADI method and

leave their discussion to [59, 140].

Table 3.2: CPU runtime of the second-order ADI method. Final time Tf = 1 and
time-stepping size ∆t = 0.05.

N Initial condition (3.3.2) Initial condition (3.3.3) Initial condition (3.3.4)
Total CPU runtime ℓ1 error Total CPU runtime ℓ1 error Total CPU runtime ℓ1 error

40 1.72E-01s 0.00 2.19E-05 6.25E-02s 0.00 1.80E-05 1.09E-01s 0.00 1.73E-05
80 7.81E-02s -1.14 3.12E-05 1.25E-01s 1.00 3.38E-05 6.25E-02s -0.81 3.26E-05
160 2.03E-01s 1.38 3.35E-05 2.19E-01s 0.81 3.78E-05 2.66E-01s 2.09 3.65E-05
320 1.56E+00s 2.94 3.41E-05 1.63E+00s 2.89 3.88E-05 1.56E+00s 2.56 3.73E-05
640 8.66E+00s 2.47 3.42E-05 8.67E+00s 2.42 3.90E-05 8.55E+00s 2.45 3.77E-05
1280 3.77E+01s 2.12 3.42E-05 3.69E+01s 2.09 3.91E-05 3.73E+01s 2.12 3.78E-05
2560 1.71E+02s 2.18 3.42E-05 1.68E+02s 2.19 3.91E-05 1.70E+02s 2.19 3.78E-05

The CPU runtimes for all three initial conditions (3.3.2)-(3.3.4) are shown in

Table 3.2 with final time Tf = 1 and fixed time-stepping size ∆t = 0.05. The results

indicate quadratic computational complexity, if not slightly above. We remind the

reader that the ADI method solves for the full-rank solution.

Example 3.2. (First-order scheme with backward Euler)

Since all three initial conditions had similar quantitative results, we only show

the CPU runtime for initial condition (3.3.2). We compare the CPU runtimes using

the diagonalized and non-diagonalized variants of Algorithm 3.1 in Table 3.3. The

time-stepping size is fixed at ∆t = 0.05 so that the computational complexity can be

observed under mesh refinement. Since the solution is at final time Tf = 1, there are

a total of 20 time-steps. As seen in the table, computing the full SVD of the initial

condition makes up a considerable portion of the total CPU runtime. However, the

initialization is done once and will become less relevant as more time-steps are taken.

The initialization step also shows O(N3) complexity. Although the SVD suggests

O(N4) complexity, this is likely from overloading the memory cache with arrays larger

than a certain size. In our simulations the computational complexity of the full SVD

128

dropped back down to O(N3) after another refinement level, but we did not include it

in the table.

Table 3.3: CPU runtime of the first-order scheme with backward Euler. We use the
rank-2 initial condition (3.3.2), initial rank r0 = ceil(N/3), tolerance ϵ = 1.0E − 10,
and time-stepping size ∆t = 0.05.

Diagonalized scheme

N Initialization Time-stepping Total CPU runtime ℓ1 error
SVD Diagonalization First time-step Per time-step

40 3.25E-02s 0.00 1.14E-03s 0.00 7.62E-03s 0.00 1.33E-03s 0.00 6.78E-02s 0.00 6.68E-05
80 6.88E-03s -2.24 1.73E-03s 0.61 5.55E-03s -0.46 9.69E-04s -0.45 3.35E-02s -1.02 6.66E-05
160 1.79E-02s 1.38 5.09E-03s 1.56 1.23E-02s 1.15 9.63E-04s -0.01 5.45E-02s 0.70 6.63E-05
320 1.53E-02s -0.22 1.06E-02s 1.06 2.92E-02s 1.24 2.05E-03s 1.09 9.62E-02s 0.82 6.60E-05
640 4.84E-02s 1.66 3.15E-02s 1.57 1.74E-01s 2.57 5.78E-03s 1.49 3.69E-01s 1.94 6.52E-05
1280 6.47E-01s 3.74 1.72E-01s 2.45 6.41E-01s 1.89 1.92E-02s 1.73 1.84E+00s 2.32 6.41E-05
2560 8.10E+00s 3.65 8.87E-01s 2.37 3.72E+00s 2.54 7.20E-02s 1.91 1.41E+01s 2.94 6.28E-05

Non-diagonalized scheme

N Initialization Time-stepping Total CPU runtime ℓ1 error
SVD First time-step Per time-step

40 2.70E-02s 0.00 7.59E-03s 0.00 1.31E-03s 0.00 6.08E-02s 0.00 6.68E-05
80 6.52E-03s -2.05 3.39E-03s -1.16 1.99E-03s 0.61 4.98E-02s -0.29 6.66E-05
160 1.45E-02s 1.15 9.39E-03s 1.47 2.97E-03s 0.58 8.33E-02s 0.74 6.62E-05
320 1.33E-02s -0.12 3.37E-02s 1.84 6.59E-03s 1.15 1.79E-01s 1.10 6.55E-05
640 5.22E-02s 1.97 2.14E-01s 2.67 3.04E-02s 2.21 8.74E-01s 2.29 6.43E-05
1280 6.00E-01s 3.52 8.72E-01s 2.03 1.63E-01s 2.42 4.73E+00s 2.44 6.32E-05
2560 8.02E+00s 3.74 4.55E+00s 2.38 9.21E-01s 2.50 3.10E+01s 2.71 6.19E-05

The observed computational complexity of the first time-step somewhat matches

the expected O(N2r0) = O(N3/3) for the diagonalized variant, and O(N3) for the non-

diagonalized variant. More importantly, the observed computational complexity of the

diagonalized variant for all other time-steps is O(N2) since r ≪ N ; the rank evolution

is shown in Section 3.3.3. The average CPU runtime per subsequent time-step is

roughly an order of magnitude smaller for the diagonalized variant than that of the

non-diagonalized variant.

The observed total computational complexity for both variants is O(N3). The

diagonalized variant observes cubic complexity since the initialization and first time-

step make up a majority of the CPU runtime. However, this will decrease towards

O(N2) as the number of time-steps increases and the total runtime is dominated by

129

the time-stepping. Comparing the two variants, the diagonalized variant is roughly

twice as fast as the non-diagonalized variant when taking 20 time-steps.

The non-diagonalized variant demonstrates cubic computational complexity,

whereas the benchmark ADI method enjoys quadratic computational complexity. How-

ever, the results in Tables 3.2 and 3.3 suggest that a very fine mesh is required for the

ADI method to outperform the non-diagonalized variant in terms of total CPU run-

time. Even for the finest mesh that we tested, 2560× 2560, the ADI method took just

over five times as long to run as the non-diagonalized variant did.

Although a higher computational complexity, the non-diagonalized variant will

be of greater importance when used to solve more complicated models. The O(N3)

complexity and overall runtime of the non-diagonalized variant are still tolerable, es-

pecially when we start considering high-dimensional problems such as those in kinetic

dynamics. We remark that higher-dimensional analogues to these DLR-type methods

have been developed using various tensor decompositions [33, 34, 108, 124, 126, 127].

Storing these high-order tensor decompositions (e.g., Tucker, hierarchical Tucker, ten-

sor train, tree tensor networks) either avoids or minimizes the curse of dimensionality.

Example 3.3. (Second-order scheme with stiffly-accurate DIRK2)

Since all three initial conditions had similar quantitative results, we only show

the CPU runtime for initial condition (3.3.2). We compare the CPU runtimes using

the diagonalized and non-diagonalized variants of Algorithm 3.2 in Table 3.4. The

time-stepping size is fixed at ∆t = 0.05 so that the computational complexity can be

observed under mesh refinement. Since the solution is at final time Tf = 1, there

are a total of 20 time-steps. As seen in the table, computing the full SVD of the

initial condition has the same CPU runtime as in Table 3.3 for the first-order scheme.

However, the initialization makes up a smaller proportion of the overall runtime than

in the first-order case since Algorithm 3.2 is essentially Algorithm 3.1 performed twice.

The observed computational complexities for both the diagonalized and non-

diagonalized variants of Algorithm 3.2 are similar to those of Algorithm 3.1, as com-

pared with the results in Table 3.3. The only slight differences being the ℓ1 error and

130

Table 3.4: CPU runtime of the second-order scheme with stiffly-accurate DIRK2. We
use the rank-2 initial condition (3.3.2), initial rank r0 = ceil(N/3), tolerance ϵ =
1.0E − 10, and time-stepping size ∆t = 0.05.

Diagonalized scheme

N Initialization Time-stepping Total CPU runtime ℓ1 error
SVD Diagonalization First time-step Per time-step

40 3.35E-02s 0.00 1.44E-03s 0.00 2.60E-02s 0.00 3.21E-03s 0.00 1.25E-01s 0.00 9.55E-07
80 7.50E-03s -2.16 3.70E-03s 1.37 8.00E-03s -1.70 3.36E-03s 0.07 8.65E-02s -0.53 1.14E-06
160 1.44E-02s 0.95 2.86E-03s -0.37 2.76E-02s 1.79 4.58E-03s 0.44 1.37E-01s 0.66 1.19E-06
320 1.39E-02s -0.05 9.89E-03s 1.79 7.54E-02s 1.45 7.17E-03s 0.65 2.43E-01s 0.83 1.19E-06
640 4.59E-02s 1.72 4.22E-02s 2.09 4.17E-01s 2.47 2.08E-02s 1.54 9.21E-01s 1.92 1.19E-06
1280 7.93E-01s 4.11 1.62E-01s 1.94 1.55E+00s 1.90 7.05E-02s 1.76 3.92E+00s 2.09 1.17E-06
2560 8.05E+00s 3.34 9.44E-01s 2.54 9.33E+00s 2.59 2.65E-01s 1.91 2.36E+01s 2.59 1.16E-06

Non-diagonalized scheme

N Initialization Time-stepping Total CPU runtime ℓ1 error
SVD First time-step Per time-step

40 6.89E-02s 0.00 2.40E-02s 0.00 4.39E-03s 0.00 1.81E-01s 0.00 9.55E-07
80 7.20E-03s -3.26 1.20E-02s -1.00 5.05E-03s 0.20 1.20E-01s -0.59 1.14E-06
160 1.61E-02s 1.16 2.64E-02s 1.13 7.74E-03s 0.62 1.97E-01s 0.72 1.18E-06
320 1.32E-02s -0.28 7.91E-02s 1.58 1.71E-02s 1.15 4.35E-01s 1.14 1.19E-06
640 5.27E-02s 2.00 4.14E-01s 2.39 7.14E-02s 2.06 1.90E+00s 2.12 1.18E-06
1280 6.57E-01s 3.64 1.96E+00s 2.24 3.64E-01s 2.35 9.90E+00s 2.38 1.16E-06
2560 8.06E+00s 3.62 1.07E+01s 2.45 1.99E+00s 2.45 5.86E+01s 2.57 1.14E-06

the computational complexity of the total CPU runtime for the diagonalized variant.

The computational complexity of the diagonalized variant is closer to quadratic than

that in Table 3.3 since the CPU runtime from the initialization and first time-step now

make up a smaller proportion of the overall runtime.

The non-diagonalized variant demonstrates cubic computational complexity,

whereas the benchmark ADI method enjoys quadratic computational complexity. How-

ever, the results in Tables 3.2 and 3.4 suggest that a very fine mesh is required for the

ADI method to outperform the non-diagonalized variant in terms of total CPU run-

time. Even for the finest mesh that we tested, 2560 × 2560, the ADI method took

roughly three times as long to run as the non-diagonalized variant did.

Example 3.4. (Second-order scheme with Crank-Nicolson)

Since all three initial conditions had similar quantitative results, we only show

131

the CPU runtime for initial condition (3.3.2). We compare the CPU runtimes us-

ing the diagonalized and non-diagonalized variants of the second-order scheme with

Crank-Nicolson in Table 3.5. The time-stepping size is fixed at ∆t = 0.05 so that the

computational complexity can be observed under mesh refinement. Since the solution

is at final time Tf = 1, there are a total of 20 time-steps. The results in Table 3.5 are

similar to the results in Table 3.4. As such, we refer the reader to Example 3.8 for

interpretation of the results.

Table 3.5: CPU runtime of the second-order scheme with Crank-Nicolson. We use the
rank-2 initial condition (3.3.2), initial rank r0 = ceil(N/3), tolerance ϵ = 1.0E − 10,
and time-stepping size ∆t = 0.05.

Diagonalized scheme

N Initialization Time-stepping Total CPU runtime ℓ1 error
SVD Diagonalization First time-step Per time-step

40 6.18E-02s 0.00 3.67E-03s 0.00 2.01E-02s 0.00 3.97E-03s 0.00 1.65E-01s 0.00 4.13E-04
80 5.47E-03s -3.50 3.05E-03s -0.27 7.02E-03s -1.52 5.80E-03s 0.55 1.32E-01s -0.33 4.93E-04
160 1.42E-02s 1.38 2.95E-03s -0.05 2.73E-02s 1.96 9.50E-03s 0.71 2.34E-01s 0.83 5.21E-04
320 1.56E-02s 0.14 1.07E-02s 1.86 7.14E-02s 1.39 1.35E-02s 0.50 3.67E-01s 0.65 5.27E-04
640 4.02E-02s 1.36 4.22E-02s 1.99 3.54E-01s 2.31 2.71E-02s 1.01 9.79E-01s 1.42 5.28E-04
1280 6.10E-01s 3.92 2.07E-01s 2.29 1.61E+00s 2.18 8.32E-02s 1.62 4.09E+00s 2.06 5.29E-04
2560 8.09E+00s 3.73 9.35E-01s 2.18 9.52E+00s 2.57 3.19E-01s 1.94 2.49E+01s 2.61 5.29E-04

Non-diagonalized scheme

N Initialization Time-stepping Total CPU runtime ℓ1 error
SVD First time-step Per time-step

40 3.41E-02s 0.00 2.37E-02s 0.00 5.70E-03s 0.00 1.72E-01s 0.00 4.13E-04
80 6.14E-03s -2.48 1.29E-02s -0.88 7.53E-03s 0.40 1.70E-01s -0.02 4.93E-04
160 1.71E-02s 1.48 3.22E-02s 1.32 1.27E-02s 0.75 3.03E-01s 0.84 5.21E-04
320 1.71E-02s -0.00 8.72E-02s 1.44 2.09E-02s 0.72 5.21E-01s 0.78 5.27E-04
640 5.75E-02s 1.75 4.14E-01s 2.25 7.94E-02s 1.93 2.06E+00s 1.98 5.28E-04
1280 6.35E-01s 3.47 1.99E+00s 2.27 3.73E-01s 2.23 1.01E+01s 2.29 5.29E-04
2560 8.03E+00s 3.66 1.11E+01s 2.48 2.05E+00s 2.46 6.02E+01s 2.57 5.29E-04

Example 3.5. (Second-order scheme with BDF2)

Since all three initial conditions had similar quantitative results, we only show

the CPU runtime for initial condition (3.3.2). We compare the CPU runtimes using

the diagonalized and non-diagonalized variants of the second-order scheme with BDF2

in Table 3.6. The time-stepping size is fixed at ∆t = 0.05 so that the computational

complexity can be observed under mesh refinement. Since the solution is at final time

132

Tf = 1, there are a total of 20 time-steps. The results in Table 3.6 are similar to

the results in Tables 3.4 and 3.5. As such, we refer the reader to Example 3.8 for

interpretation of the results.

Table 3.6: CPU runtime of the second-order scheme with BDF2. We use the rank-2
initial condition (3.3.2), initial rank r0 = ceil(N/3), tolerance ϵ = 1.0E− 10, and time-
stepping size ∆t = 0.05.

Diagonalized scheme

N Initialization Time-stepping Total CPU runtime ℓ1 error
SVD Diagonalization First time-step Per time-step

40 2.95E-02s 0.00 3.54E-03s 0.00 2.23E-02s 0.00 3.83E-03s 0.00 1.36E-01s 0.00 1.09E-05
80 8.71E-03s -1.76 4.54E-03s 0.36 1.43E-02s -0.64 3.61E-03s -0.09 1.03E-01s -0.40 1.10E-05
160 1.62E-02s 0.90 3.60E-03s -0.33 3.95E-02s 1.46 4.75E-03s 0.40 1.59E-01s 0.62 1.11E-05
320 1.65E-02s 0.03 1.50E-02s 2.06 8.09E-02s 1.04 1.12E-02s 1.24 3.48E-01s 1.13 1.11E-05
640 4.63E-02s 1.49 4.98E-02s 1.73 3.92E-01s 2.28 3.04E-02s 1.44 1.13E+00s 1.70 1.11E-05
1280 6.44E-01s 3.80 2.11E-01s 2.08 1.82E+00s 2.21 1.14E-01s 1.91 5.07E+00s 2.17 1.11E-05
2560 8.06E+00s 3.65 9.97E-01s 2.24 9.82E+00s 2.44 5.20E-01s 2.18 2.98E+01s 2.55 1.11E-05

Non-diagonalized scheme

N Initialization Time-stepping Total CPU runtime ℓ1 error
SVD First time-step Per time-step

40 3.57E-02s 0.00 2.59E-02s 0.00 5.55E-03s 0.00 1.78E-01s 0.00 1.09E-05
80 8.21E-03s -2.12 1.66E-02s -0.64 4.35E-03s -0.35 1.16E-01s -0.62 1.10E-05
160 1.57E-02s 0.94 4.26E-02s 1.36 9.22E-03s 1.08 2.52E-01s 1.12 1.11E-05
320 1.82E-02s 0.21 8.72E-02s 1.03 2.02E-02s 1.13 5.29E-01s 1.07 1.11E-05
640 4.43E-02s 1.28 4.25E-01s 2.29 7.67E-02s 1.93 2.08E+00s 1.97 1.11E-05
1280 6.28E-01s 3.83 1.93E+00s 2.18 3.95E-01s 2.36 1.08E+01s 2.38 1.11E-05
2560 8.37E+00s 3.74 1.32E+01s 2.77 2.48E+00s 2.65 7.36E+01s 2.76 1.11E-05

3.3.2 Convergence analysis

In this subsection, we demonstrate the spatial and temporal convergence of

the first- and second-order schemes. To observe the temporal convergence, we fix the

spatial mesh and vary the time-stepping size

∆t = CFL∆x, (3.3.7)

where CFL > 0 is the CFL number (up to some scaling). Unless otherwise stated, the

results in this subsection use tolerance ϵ = 1.0E − 10 and initial rank r0 = ceil(N/3).

Second-order centered differences are used to approximate the spatial derivatives.

133

Example 3.6. (A benchmark method)

To serve as a benchmark comparison, we first show the convergence results for

the classical ADI method [59, 140] that solves for the full-rank solution. The method

is formally second-order in both space and time. As seen in Table 3.7, we observe the

expected second-order convergence under spatial mesh refinement using time-stepping

size ∆t = 3∆x up to final time Tf = 1. Figure 3.6 shows the expected second-order

temporal convergence, for which we use mesh 320×320 and CFL numbers varying from

0.1 to 20. Notice that the rank two initial condition (3.3.2) leads to ringing behavior for

larger time-stepping sizes due to the Crank-Nicolson method, as discussed in Section

3.1.3. This is because initial condition (3.3.2) excites several modes. The proposed

low-rank scheme also experiences this ringing behavior when Crank-Nicolson method

is used for the time integration.

Table 3.7: Convergence study with spatial mesh refinement of the second-order ADI
method. Final time Tf = 1 and time-stepping size ∆t = 3∆x.

N Initial condition (3.3.2) Initial condition (3.3.3) Initial condition (3.3.4)
ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime

40 9.88E-05 0.00 1.09E-01s 6.50E-05 0.00 7.81E-02s 6.25E-05 0.00 6.25E-02s
80 6.78E-06 3.87 7.81E-02s 1.64E-05 1.98 1.56E-01s 1.58E-05 1.98 1.09E-01s
160 7.07E-08 6.58 6.88E-01s 4.15E-06 1.98 5.94E-01s 3.95E-06 2.00 7.50E-01s
320 1.74E-08 2.02 8.19E+00s 1.04E-06 2.00 7.98E+00s 9.87E-07 2.00 7.98E+00s
640 4.37E-09 2.00 9.28E+01s 2.61E-07 2.00 9.01E+01s 2.46E-07 2.00 9.17E+01s

Example 3.7. (First-order scheme with backward Euler)

As seen in Table 3.3, the ℓ1 error is the nearly indistinguishable for the diagonal-

ized and non-diagonalized variants. Since both variants produce the same error, we test

for convergence only using the diagonalized variant. Table 3.8 shows the convergence

under spatial mesh refinement using time-stepping size ∆t = 3∆x. As expected with

∆t = 3∆x, the temporal error from backward Euler dominates the error as indicated

by the first-order convergence. The temporal error from backward Euler dominates

the error even for small time-stepping sizes as seen in Figure 3.7. Figure 3.7 shows the

expected first-order temporal convergence, for which we use fixed mesh 320× 320 and

134

Figure 3.6: Error plot of second-order ADI method with mesh 320 × 320. The errors
are shown for initial conditions (3.3.2)-(3.3.4).

CFL numbers varying from 0.1 to 20. The ℓ1 errors are larger than those of the full-rank

ADI method due to the time-stepping error from the first-order versus second-order

time integrators.

Table 3.8: Convergence study with spatial mesh refinement of the first-order scheme
with backward Euler (with diagonalization). Final time Tf = 1, initial rank r0 =
ceil(N/3), tolerance ϵ = 1.0E − 10, and time-stepping size ∆t = 3∆x.

N Initial condition (3.3.2) Initial condition (3.3.3) Initial condition (3.3.4)
ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime

40 1.03E-04 0.00 7.58E-02s 5.65E-03 0.00 5.80E-02s 5.32E-03 0.00 7.11E-02s
80 4.82E-05 1.11 3.94E-02s 2.79E-03 1.04 2.61E-02s 2.62E-03 1.04 7.80E-02s
160 2.32E-05 1.07 8.26E-02s 1.38E-03 1.02 8.18E-02s 1.30E-03 1.02 6.14E-02s
320 1.13E-05 1.04 2.07E-01s 6.87E-04 1.01 1.92E-01s 6.47E-04 1.01 2.23E-01s
640 5.61E-06 1.02 1.27E+00s 3.43E-04 1.01 1.18E+00s 3.23E-04 1.01 1.38E+00s

Example 3.8. (Second-order scheme with stiffly-accurate DIRK2)

As seen in Table 3.4, the ℓ1 error is the nearly indistinguishable for the diagonal-

ized and non-diagonalized variants. Since both variants produce the same error, we test

for convergence only using the diagonalized variant. Table 3.9 shows the convergence

under spatial mesh refinement using time-stepping size ∆t = 3∆x. As expected with

135

Figure 3.7: Error plot of first-order scheme using backward Euler with mesh 320× 320
and tolerance ϵ = 1.0E−10. The errors are shown for initial conditions (3.3.2)-(3.3.4).

Table 3.9: Convergence study with spatial mesh refinement of the second-order scheme
with stiffly-accurate DIRK2 (with diagonalization). Final time Tf = 1, initial rank
r0 = ceil(N/3), tolerance ϵ = 1.0E − 10, and time-stepping size ∆t = 3∆x.

N Initial condition (3.3.2) Initial condition (3.3.3) Initial condition (3.3.4)
ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime

40 2.42E-06 0.00 1.11E-01s 9.74E-05 0.00 1.04E-01s 9.16E-05 0.00 1.12E-01s
80 6.02E-07 2.04 9.04E-02s 2.42E-05 2.04 4.81E-02s 2.28E-05 2.04 5.03E-02s
160 1.51E-07 2.02 2.00E-01s 6.08E-06 2.01 1.45E-01s 5.72E-06 2.01 1.41E-01s
320 3.76E-08 2.01 6.27E-01s 1.52E-06 2.01 4.88E-01s 1.43E-06 2.01 5.45E-01s
640 9.41E-09 2.00 3.74E+00s 3.80E-07 2.00 3.53E+00s 3.57E-07 2.00 3.78E+00s

∆t = 3∆x, the we observe second-order convergence. Figure 3.8 shows the expected

second-order temporal convergence, for which we use fixed mesh 320 × 320 and CFL

numbers varying from 0.1 to 20. The temporal error from DIRK2 starts to dominate

the error around CFL = 2, as seen in Figure 3.8. The ℓ1 errors are comparable to

those of the full-rank ADI method.

Example 3.9. (Second-order scheme with Crank-Nicolson)

As seen in Table 3.5, the ℓ1 error is the nearly indistinguishable for the diag-

onalized and non-diagonalized variants. Since both variants produce the same error,

we test for convergence only using the diagonalized variant. Table 3.10 shows the

136

Figure 3.8: Error plot of second-order scheme using stiffly-accurate DIRK2 with mesh
320 × 320 and tolerance ϵ = 1.0E − 10. The errors are shown for initial conditions
(3.3.2)-(3.3.4).

convergence under spatial mesh refinement using time-stepping size ∆t = 3∆x. As

expected with ∆t = 3∆x, the we observe second-order convergence. Figure 3.9 shows

the expected second-order temporal convergence, for which we use fixed mesh 320×320

and CFL numbers varying from 0.1 to 20. The temporal error from Crank-Nicolson

starts to dominate the error around CFL = 1, as seen in Figure 3.9. The ℓ1 errors are

comparable to those of the full-rank ADI method.

The Crank-Nicolson method experiences ringing behavior for larger time-stepping

sizes and initial conditions/solutions that excite several modes, as discussed in Section

3.1.3. We show later in Section 3.3.3 that the rank of the solution to initial condi-

tion (3.3.2) is larger than the other two initial conditions. This higher rank is due to

the fact that Gaussian/Maxwellian distributions excite several modes, hence why only

the results from initial condition (3.3.2) experience divergent behavior in the error for

larger time-stepping sizes. As seen in Figure 3.9, the amplification factor (see Section

3.1.3) becomes negative for CFL > 5 when the spatial mesh is fixed at 320 × 320.

Since many functions in physical applications excite several modes, the second-order

scheme with Crank-Nicolson is not the best choice, especially if larger time-stepping

137

sizes are desired.

Table 3.10: Convergence study with spatial mesh refinement of the second-order scheme
with Crank-Nicolson (with diagonalization). Final time Tf = 1, initial rank r0 =
ceil(N/3), tolerance ϵ = 1.0E − 10, and time-stepping size ∆t = 3∆x.

N Initial condition (3.3.2) Initial condition (3.3.3) Initial condition (3.3.4)
ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime

40 1.30E-03 0.00 1.25E-01s 2.17E-04 0.00 1.07E-01s 2.09E-04 0.00 1.00E-01s
80 1.21E-04 3.49 1.58E-01s 5.48E-05 2.02 5.10E-02s 5.28E-05 2.02 8.08E-02s
160 7.63E-07 7.38 4.86E-01s 1.38E-05 2.00 1.32E-01s 1.31E-05 2.02 2.13E-01s
320 8.13E-08 3.25 1.48E+00s 3.46E-06 2.01 5.10E-01s 3.29E-06 2.01 7.20E-01s
640 2.04E-08 2.00 4.46E+00s 8.68E-07 2.00 3.63E+00s 8.20E-07 2.01 3.91E+00s

Figure 3.9: Error plot of second-order scheme using Crank-Nicolson with mesh 320×320
and tolerance ϵ = 1.0E−10. The errors are shown for initial conditions (3.3.2)-(3.3.4).

Example 3.10. (Second-order scheme with BDF2)

As seen in Table 3.6, the ℓ1 error is the nearly indistinguishable for the diagonal-

ized and non-diagonalized variants. Since both variants produce the same error, we test

for convergence only using the diagonalized variant. Table 3.11 shows the convergence

under spatial mesh refinement using time-stepping size ∆t = 3∆x. As expected with

∆t = 3∆x, the we observe second-order convergence. Figure 3.10 shows the expected

second-order temporal convergence, for which we use fixed mesh 320 × 320 and CFL

138

Table 3.11: Convergence study with spatial mesh refinement of the second-order scheme
with BDF2 (with diagonalization). Final time Tf = 1, initial rank r0 = ceil(N/3),
tolerance ϵ = 1.0E − 10, and time-stepping size ∆t = 3∆x.

N Initial condition (3.3.2) Initial condition (3.3.3) Initial condition (3.3.4)
ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime ℓ1 error ℓ1 order Runtime

40 2.60E-05 0.00 1.55E-01s 1.06E-03 0.00 8.33E-02s 9.96E-04 0.00 1.41E-01s
80 5.83E-06 2.20 1.30E-01s 2.47E-04 2.14 5.75E-02s 2.33E-04 2.14 1.13E-01s
160 1.41E-06 2.06 2.35E-01s 6.10E-05 2.04 1.48E-01s 5.74E-05 2.04 1.83E-01s
320 3.44E-07 2.04 7.34E-01s 1.50E-05 2.03 5.12E-01s 1.41E-05 2.03 5.75E-01s
640 8.54E-08 2.02 3.73E+00s 3.75E-06 2.01 3.41E+00s 3.52E-06 2.01 3.72E+00s

Figure 3.10: Error plot of second-order scheme using BDF2 with mesh 320× 320 and
tolerance ϵ = 1.0E − 10. The errors are shown for initial conditions (3.3.2)-(3.3.4).

numbers varying from 0.1 to 20. The temporal error from BDF2 starts to dominate

the error around CFL = 0.6, as seen in Figure 3.10. The ℓ1 errors are comparable to

those of the full-rank ADI method.

3.3.3 Rank evolution

In this subsection, we present and analyze the rank evolution of the solution.

We compare the results using the two time-stepping sizes used in this section: ∆t = 0.5

and ∆t = 3∆x. Since the results of the non-diagonalized and diagonalized variants of

the proposed scheme produce nearly identical results, we only show results using the

139

diagonalized variant. Since the only difference between the two variants is the diago-

nalization of the real symmetric tridiagonal matrix I −∆tDx (and similarly for y), it

is not surprising that the results are identical. However, this is most likely because the

matrix being diagonalized has nice structure and is not too large. More complicated

differential operators in the future work, such as convection-diffusion, might cause nu-

merical inaccuracies in the diagonalization, in which case the non-diagonalized variant

will be the safer choice.

Figure 3.11: The rank evolution using backward Euler with mesh 640× 640 and toler-
ance ϵ = 1.0E − 10. The rank is shown for all three initial conditions (3.3.2)-(3.3.4).
(left) Time-stepping size ∆t = 0.05; (right) Time-stepping size ∆t = 3∆x.

As seen in Figures 3.11-3.14, the solution corresponding to initial condition

(3.3.2) has a higher rank than the solutions corresponding to initial conditions (3.3.3),

(3.3.4) (for short times). This is because the initial condition (3.3.2) starts “further”

from its equilibrium solution. Whereas, initial condition (3.3.3) is exactly the first

three Fourier modes and thus starts close in structure to its equilibrium solution. And,

initial condition (3.3.4) is “far” away from its equilibrium solution due to the structure

of Runge’s function, yet not too far since the numerator is the first Fourier mode.

Furthermore, as seen in Figures 3.11-3.14, the ranks for the solutions to all

three initial conditions decay faster for ∆t = 3∆x than for ∆t = 0.05 > 3∆x. This

is due to the approximate bases not being rich enough to effectively capture the fast

diffusion dynamics over time-steps that are too large. In other words, the larger the

140

Figure 3.12: The rank evolution using stiffly-accurate DIRK2 with mesh 640 × 640
and tolerance ϵ = 1.0E − 10. The rank is shown for all three initial conditions (3.3.2)-
(3.3.4). (left) Time-stepping size ∆t = 0.05; (right) Time-stepping size ∆t = 3∆x.

Figure 3.13: The rank evolution using Crank-Nicolson with mesh 640× 640 and toler-
ance ϵ = 1.0E − 10. The rank is shown for all three initial conditions (3.3.2)-(3.3.4).
(left) Time-stepping size ∆t = 0.05; (right) Time-stepping size ∆t = 3∆x.

time-step the more you are asking the approximate bases to predict. Hence, although

the diffusion dynamics are captured for large time-stepping sizes to an extent, the rank

decay will not be as fast.

Lastly, the rank appears stagnant in Figure 3.13 for the second-order scheme

using Crank-Nicolson with a time-stepping size ∆t = 0.05. This is due to the ringing

behavior that Crank-Nicolson experiences for time-stepping sizes that are too large,

and/or for solutions that excite several modes (see Section 3.1.3). Even for solutions

141

Figure 3.14: The rank evolution using BDF2 with mesh 640 × 640 and tolerance ϵ =
1.0E − 10. The rank is shown for all three initial conditions (3.3.2)-(3.3.4). (left)
Time-stepping size ∆t = 0.05; (right) Time-stepping size ∆t = 3∆x.

that do not excite too many modes, ∆t = 0.05 is so large that the amplification factor

is negative for small wave numbers. Unlike the rank evolutions shown in Figure 3.13

for ∆t = 0.05, the rank evolutions for ∆t = 3∆x decay as they should. This is because

a time-stepping size of ∆t = 3∆x with a fixed mesh of 640× 640 is small enough that

the ringing behavior does not occur.

3.4 Conclusions and follow-up work

A novel implicit low-rank method was presented for solving the diffusion equa-

tion. Traditional integrators are utilized in our low-rank setting. Similar to the un-

conventional method [32], we first update the one-dimensional bases in each direction,

and then use the updated bases to update the coefficients of the low-rank solution.

Although we do not update the bases in parallel, the proposed scheme is designed

to do so. First-order and second-order schemes are presented, and we show that the

Crank-Nicolson time discretization produces oscillatory ringing behavior for solutions

that activate several modes. Convergence in both space and time is shown, as well as

the computational benefits of the low-rank solution.

Ongoing and future work includes constructing rich high-order bases without the

need of the K and L steps, extending the proposed scheme to higher-order accuracy

142

using other spatial discretizations and stiffly-accurate DIRK methods, and formalizing

a rigorous analysis of the proposed scheme. In particular, error estimates for the

proprosed scheme in the low-rank setting are highly desired. We also want to apply

the proposed scheme to more complicated models, e.g., convection-diffusion equations

and the Leonard-Bernstein-Fokker-Planck equation.

143

Chapter 4

A LOW-RANK TENSOR SCHEME WITH
STRUCTURE-PRESERVING QUALITIES FOR SOLVING THE 1D2V

VLASOV-FOKKER-PLANCK EQUATION

In this chapter, we are concerned with numerically solving the Vlasov-Fokker-

Planck equation

∂fα
∂t

+ v · ∇xfα +
qα
mα

E · ∇vfα =
Ns∑
β

Cαβ(fα, fβ), (4.0.1)

where Ns is the total number of plasma species, fα(x,v, t) is the particle distribution

function of species α, and Cαβ is the Fokker-Planck collision operator for species α col-

liding with species β. Our treatment of equation (4.0.1) assumes one spatial dimension

and two velocity dimensions in cylindrical coordinates (1D2V), as well as the linearized

form of the Fokker-Planck collision operator (also known as the Leonard-Bernstein-

Fokker-Planck operator). Although linearized, the Leonard-Bernstein-Fokker-Planck

collision operator is formally nonlinear in the sense that Cαβ depends on macroscopic

parameters that are nonlinear functionals of the solution. Furthermore, we assume the

collision operator only models Coulomb collisions between a single ion species α with

itself (Cαα) and free electrons (Cαe). We use a hybrid kinetic-ion and fluid-electron

model. That is, we model the ions kinetically with equation (4.0.1) but assume the

free electrons behave like a fluid. Coupling equation (4.0.1) with the fluid-electron

energy equation yields a nonlinear system of equations with the goal of solving for fα.

We present a low-rank tensor scheme for solving the Vlasov-Leonard-Bernstein-

Fokker-Planck (VLBFP) equation. The low-rank structure of the solution is enforced

144

using the SVD to remove redundant basis vectors, see Section (3.1.1.1). We ob-

serve structure-preserving qualities by discretizing the collision operator with the ro-

bust structure-preserving Chang-Cooper (SPCC) method [139]. Although the SPCC

method was originally published to accommodate Cartesian coordinates, we extend

this method to cylindrical coordinates. Unlike the DLR-inspired method in Chapter

3 that evolves each basis independently, the low-rank tensor method presented here

evolves the entire solution in one step. Thus, we update the solution with a different

solver that can handle large systems of tensor product structure.

This chapter is organized as follows. Section 4.1 reviews the three technical

components used in this scheme: the SPCC method, and the solver for solution updat-

ing. Sections 4.2 and 4.3 outline the proposed scheme. Section 4.4 presents numerical

results verifying the convergence and structure-preservation qualities of the scheme.

And lastly, Section 4.5 has concluding remarks and ongoing work.

4.1 Review of technical components

In this section we review the two key components that help build the proposed

scheme. Although we extend the following methods to handle cylindrical coordinates,

we start by presenting them in Cartesian coordinates. To stay consistent with the

notation later in this chapter, we use (vx, vy) ∈ R2 to denote Cartesian coordinates

in 2V velocity space. First, we review the SPCC discretization used to discretize the

Leonard-Bernstein-Fokker-Planck collision operator. Second, we review a solver for

large linear systems of tensor-product structure that we use to update the low-rank

tensor solution.

145

4.1.1 A structure-preserving Chang-Cooper (SPCC) discretization in Carte-

sian coordinates

Structure preservation is highly desired when designing algorithms for solving

kinetic models. Physical structures that scientists strive to capture include positiv-

ity preservation, equilibrium preservation, relative entropy dissipation, and asymp-

totic preservation, amongst others. In [139], Pareschi and Zanella recently developed

a structure-preserving Chang-Cooper (SPCC) scheme for solving the Fokker-Planck

equations of the form

∂f

∂t
= ∇v ·

[
BBB[f](v, t)f(v, t) +∇v

(
D(v)f(v, t)

)]
, (4.1.1)

where the right-hand side is the Fokker-Planck collision operator. Some authors refer

to the quantity −
[
BBB[f](v, t) +∇vD(v)

]
as the friction coefficient. By generalizing

and extending the popular Chang-Cooper scheme [36], the authors in [139] developed

a scheme that they proved is positivity-preserving (under a CFL-type restriction),

equilibrium-preserving and relative entropy dissipative. Equilibrium-preservation is

enforced by imposing a zero-flux boundary condition and equating the discrete and

continuous ratios of the solution on consecutive cells. Relative entropy dissipation is

proved by rewriting the Fokker-Planck equation in the non-logarithmic Landau form.

The SPCC scheme was demonstrated in Cartesian coordinates in velocity space only

for the Fokker-Planck equation, that is, either spatially homogeneous or no Vlasov

term. In this subsection, we summarize the one-dimensional case and state, but do not

prove, the structure-preserving properties of the SPCC scheme. We refer the reader to

[139] for the proofs and more details.

In the one-dimensional case, we can rewrite equation (4.1.1) as

∂f

∂t
=
∂F [f](v, t)

∂v
, (4.1.2)

where the flux function decomposes the right-hand side into its friction and diffusion

146

terms,

F [f](v, t) =
(
BBB[f](v, t) +D′(v)

)
f(v, t) +D(v)

∂f(v, t)

∂v
. (4.1.3)

Consider a uniform mesh in velocity v using N grid points,

vleft = v1 < v2 < ... < vN−1 < vN = vright,

where ∆v = vi+1 − vi, for all i. Letting vi± 1
2
= vi ± ∆v

2
, the conservative discretization

of equation (4.1.2) is

dfi(t)

dt
=
Fi+ 1

2
(t)−Fi− 1

2
(t)

∆v
, (4.1.4)

where Fi± 1
2
is the numerical flux. The key to the SPCC scheme, and what makes it

robust and of Chang-Cooper type, is how we define the numerical flux. Broadly speak-

ing, we let the friction term be expressed as a (non)linear weighted sum of neighboring

point values. Let ζ[f](v, t) = BBB[f](v, t) + D′(v) denote the friction coefficient and

consider a general numerical flux function of the form

Fi+ 1
2
= ζ̃i+ 1

2
f̃i+ 1

2
+Di+ 1

2

fi+1 − fi
∆v

, (4.1.5a)

f̃i+ 1
2
= (1− δi+ 1

2
)fi+1 + δi+ 1

2
fi. (4.1.5b)

The goal is to define ζ̃i+ 1
2
and δi+ 1

2
in such a way that structure is preserved while

maintaining high-order accuracy. After a bit of algebra we can easily express the

ratio fi+1/fi in terms of ζ̃i+ 1
2
and δi+ 1

2
. Imposing the zero-flux boundary condition

at the continuous level, F [f](v, t) ≡ 0, dividing equation (4.1.3) by f(v, t)D(v), and

integrating over [vi, vi+1], we get an expression for f(vi+1, t)/f(vi, t). Imposing this

analytical flux condition enforces equilibrium preservation. Equating the discrete and

continuous ratios fi+1/fi = f(vi+1, t)/f(vi, t) yields the following expressions for ζ̃i+ 1
2

and δi+ 1
2
.

ζ̃i+ 1
2
=
Di+ 1

2

∆v

∫ vi+1

vi

BBB[f](v, t) +D′(v)

D(v)
dv, (4.1.6a)

147

δi+ 1
2
=

1

λi+ 1
2

+
1

1− exp(λi+ 1
2
)
, (4.1.6b)

λi+ 1
2
=

∆vζ̃i+ 1
2

Di+ 1
2

, (4.1.6c)

where the integral term can be approximated to arbitrarily high-order accuracy using

any suitable quadrature. Equations (4.1.6) are referred to as structure-preserving

Chang-Cooper (SPCC) type schemes. In the case that the integral term is ap-

proximated by the midpoint rule, the function BBB[f](v, t) = BBB(w) is only a function

of velocity, and the diffusion coefficient D is constant, equation (4.1.6) reduces to the

Chang-Cooper method [26, 36, 131]. Next, we present the main properties from [139]

but refer the reader to the paper for more details.

Theorem 4.1 (Mass conservation [139]). Let us consider the scheme (4.1.4), (4.1.5)

for i = 1, 2, ..., N with zero-flux boundary conditions FN+ 1
2
= F− 1

2
= 0. Then

N∑
i=0

d

dt
fi(t) = 0, ∀t > 0.

Theorem 4.2 (Positivity preservation for the explicit scheme [139]). Under the time-

step restriction

∆t ≤ ∆v2

2(M∆v +D)
, M = max

i
|ζ̃n

i+ 1
2
|, D = max

i
Di+ 1

2
,

the explicit scheme

fn+1
i = fn

i +∆t
Fn

i+ 1
2

−Fn
i− 1

2

∆v

with flux defined by (4.1.6) preserves non-negativity, i.e., fn+1
i ≥ 0 if fn

i ≥ 0, i =

1, 2, ..., N . Moreover, this non-negativity result can be extended to general strong

stability-preserving (SSP) Runge-Kutta methods [77] since SSP methods are obtained

by considering a convex combination of forward Euler methods.

Theorem 4.3 (Positivity preservation for the semi-implicit scheme [139]). Under the

148

time-step restriction

∆t <
∆v

2M
, M = max

i
|ζ̃n

i+ 1
2
|,

the semi-implicit scheme

fn+1
i = fn

i +∆t
F̂n+1

i+ 1
2

− F̂n+1
i− 1

2

∆v
,

where

F̂n+1
i+ 1

2

= ζ̃n
i+ 1

2

[
(1− δn

i+ 1
2
)fn+1

i+1 + δn
i+ 1

2
fn+1
i

]
+Di+ 1

2

fn+1
i+1 − fn+1

i

∆v
,

preserves non-negativity, i.e., fn+1
i ≥ 0 if fn

i ≥ 0, i = 1, 2, ..., N . Moreover, this

non-negativity result can be extended to higher-order semi-implicit schemes following

[20].

Theorem 4.4 (Relative entropy dissipation [139]). Consider BBB[f](v, t) = v−u, where

−1 < u < 1 is a given constant. The numerical flux (4.1.5) defined by (4.1.6) satisfies

the discrete entropy dissipation

d

dt
H∆(f, f

∞) = −I∆(f, f∞) ≤ 0,

where

H∆(f, f
∞) = ∆v

N∑
i=0

filog

(
fi
f∞
i

)
and I∆ is the positive discrete dissipation function

I∆(f, f∞) =
N∑
i=0

log(fi+1

f∞
i+1

)
− log

(
fi
f∞
i

) ·(fi+1

f∞
i+1

− fi
f∞
i

)
f̂∞
i+ 1

2
Di+ 1

2
≥ 0.

Remark 4.1. The entropy function H∆ defined in Theorem 4.4 is known as the Kull-

back relative entropy. There is a large literature on entropy inequalities and the long-

time behavior of kinetic equations, and we refer the reader to [54] for more information.

149

4.1.2 A matrix exponential-based solver for large linear systems of tensor-

product structure

Despite there being a vast literature on how to solve linear systems in the two-

dimensional matrix case, such solvers for higher-order low-rank tensors can be more

complicated (not to say the two-dimensional case is easy). Two methods for solving

such systems are the low Kronecker-rank approximations in [79] and the preconditioned

tensorized Krylov method in [113]. This subsection focuses on the prior method.

In [79], Grasedyck presents an implicit solver for large linear systems of tensor-

product structure. Broadly speaking, the method approximates the solution within

some error by a sum of vectors in tensor-product structure. Each vector involves

the computation of a matrix exponential which although inconvenient, is tolerable in

the low-rank setting since the method easily accommodates higher dimensions. The

theoretical details of the method are more involved and left to the paper [79]. For

the sake of this dissertation, we only present the approximate solution and its error

estimates. We consider a linear system in d dimensions

Ax = b, (4.1.7)

where A and b have a special structure

A =
d∑

i=1

Âi, Âi = I ⊗ ...⊗ I︸ ︷︷ ︸
i−1 times

⊗Ai ⊗ I ⊗ ...⊗ I︸ ︷︷ ︸
d−i times

, Ai ∈ RN×N , (4.1.8a)

b =
d⊗

i=1

bi, b
(k)
i ∈ RN , b(j1,...,jd) =

d∏
i=1

(bi)ji , for j ∈ {1, ..., N}d, (4.1.8b)

where ⊗ denotes the (Kronecker) tensor product. Each Ai is the discretization in the

ith dimension, and it is assumed the spectrum σ(A) is contained in the left complex

halfplane. Such operators arise in finite element and finite difference discretizations of

partial differential equations, e.g., diffusion equations and convection-diffusion equa-

tions. Given ϵ > 0, Grasedyck’s algorithm can solve linear systems with structure

150

(4.1.8) for an approximate solution x̃ such that

∥x− x̃∥2 ≤ ϵ∥x∥2 .

Leaving its derivation to the paper, the approximate solution to (4.1.7), (4.1.8)

is given in the following theorem; the proof can be found in [79].

Theorem 4.5 (Approximate solution to (4.1.7), (4.1.8) [79]). Let A be a matrix of

tensor structure (4.1.8) with spectrum σ(A) contained in the strip Ω := −[λmin, λmax]⊕

i[−µ, µ] ⊆ C−. Let b be the tensor vector in (4.1.8). Let K ∈ N and (tj, wj), j =

−K, ...,K be the Stenger quadrature nodes and weights given in Appendix F. Then,

the solution to Ax = b can be approximated by

x̃ := −
K∑

j=−K

2wj

λmin

d⊗
i=1

(
exp

(
2tj
λmin

Ai

)
bi

)
(4.1.9)

with error estimate

∥x− x̃∥2 ≤
Cst

πλmin

exp

(
2µλ−1

min + 1

π
− π
√
2K

)∮
Γ

∥∥(λI − 2A/λmin)
−1
∥∥ dΓλ∥b∥2 ,

(4.1.10)

where Cst is a constant independent of Ai and K, and Γ denotes the boundary of a

rectangle containing Ω in the left complex halfplane. Here, λmin and λmax are the

smallest and largest eigenvalues of A. These are easily computed since the eigenvalues

of A are the sum of the eigenvalues of the Ai,

σ(A) =
d∑

i=1

σ(Ai) =


d∑

i=1

λi : λi ∈ σ(Ai)

 .

The Stenger quadrature is used in the approximate solution. It is a quadrature

originally intended to approximate improper integrals of scalar exponential functions

that decay at infinity [160]. Grasedyck extends this quadrature to approximate matrix

151

exponentials. We provide the Stenger quadrature nodes and weights, as well as the

error estimate in Appendix F.

For our purposes, all Ai are assumed diagonalizable, which allows us to use

Algorithm 12 from [79] to compute the approximate solution. The author presents

two other algorithms using a Taylor series expansion of the matrix exponential and

H−matrices [81], respectively. We outline Algorithm 12 from [79] below.

Algorithm 4.1. Algorithm 12 from [79]

Inputs: the diagonalizable matrices Ai; tensor vector⊗d
i=1bi; Stenger quadrature nodes

and weights (tj, wj), j = −K, ...,K.

Outputs: the approximate solution x̃.

1. Compute the eigenvalue decomposition Ai = TiDiT
−1
i , for i = 1, ..., d.

2. Set b̂i := T−1
i bi, for i = 1, ..., d.

3. For each 1 ≤ i ≤ d and −K ≤ j ≤ K, compute the vector

x̃
(j)
i := Tiexp

(
2tj
λmin

Di

)
b̂i, where λmin :=

∑d
i=1 λmin(Ai).

Note: we used MATLAB’s expm function to compute the matrix exponen-

tial and found it faster than the available packages in Julia as of 2022.

The approximate solution is x̃ := −
K∑

j=−K

2wj

λmin

d⊗
i=1

x̃
(j)
i .

Remark 4.2. The method described was for the case of a rank-1 righthand side. In

fact, the righthand side is quite often a rank-m tensor (e.g., the rank-m solution at a

previous time-step),

b =
m∑
k=1

b(k),

where each b(k) has the tensor-product structure in (4.1.8). In this case, we simply

152

apply the inverse operator to each b(k) and the approximate solution is instead

x̃ = −
m∑
k=1

 K∑
j=−K

2wj

λmin

2⊗
i=1

(
exp

(
2tj
λmin

Ai

)
b
(k)
i

). (4.1.11)

The approximate solution can easily be computed (assuming all the Ai are diagonaliz-

able) by applying Algorithm 4.1 to each b(k).

4.2 Discretizing the 1D2V Vlasov-Leonard-Bernstein-Fokker-Planck equa-

tion

The goal of this chapter is to solve a hybrid kinetic-ion and fluid-electron model

for a single species ion distribution function fα(x,v, t), where α denotes the ion species

(e.g., hydrogen). The Vlasov-Fokker-Planck with the Leonard-Bernstein form of the

Fokker-Planck collision operator is used for the kinetic model, and it is nonlinearly cou-

pled with the fluid-electron energy equation. We assume one spatial dimension x and

two velocity dimensions in cylindrical coordinates (v||, v⊥) with azimuthal symmetry.

The parallel velocity direction coincides with the spatial dimension, as seen in Figure

4.1.

Figure 4.1: The phase space domain of the 1D2V model. The direction of the parallel
velocity component coincides with the spatial direction.

The nondimensional model and its macroscopic parameters and kinetic fluxes

are presented. The nondimensional Vlasov-Leonard-Bernstein-Fokker-Planck (VLBFP)

model in 2V cylindrical coordinates is [162]

∂fα
∂t

+ v||
∂fα
∂x

+
qα
mα

E||
∂fα
∂v||

= Cαα + Cαe, (4.2.1a)

153

Cαα = ναα∇v ·
(
Tα
mα

∇vfα + (v − uα)fα

)
, (4.2.1b)

Cαe = ναe∇v ·
(
Te
mα

∇vfα + (v − ue)fα

)
, (4.2.1c)

where fα is the distribution function for the single ion species α, and the charge,

mass, temperature, bulk velocity and collision frequencies for the ions and electrons

are respectively denoted by q, m, T , u, and ν. The nondimensional fluid electron

energy equation is [162]

3

2

∂pe
∂t

+
5

2

∂

∂x

(
ue,||pe

)
− ue,||

∂pe
∂x
− ∂

∂x

(
κe,||

∂Te
∂x

)
= Weα, (4.2.2a)

Weα = −

〈
mα|v|2

2
, Cαe

〉
, (4.2.2b)

where pe = neTe is the electron pressure, κe,|| is the electron Braginskii thermal con-

ductivity, and the velocity space L2 inner product is denoted

⟨F (v), G(v)⟩ .= 2π

∫ ∞

−∞

∫ ∞

0

F (v)G(v)v⊥dv⊥dv||. (4.2.3)

The ion mass, number density, temperature and charge are scaled to unity. To

enforce conservation of the moment system at the spatio-temporal discrete level, we

assume quasi-neutrality n = nα = ne, ambipolarity u = uα = ue, and that the electric

field is determined from Ohm’s law E|| =
1

qene

∂pe
∂x

; for the applications of interest we

assume qα = −qe. We further assume drift only occurs in the parallel direction, that

is, u⊥ = 0. The dimensional model and its nondimensionalization, including how we

define the reference quantities, can be found in Appendix D. Appendix D uses tildes

∼ to denote the dimensionless variables, but the tildes are dropped in this chapter

for notational ease. Under these assumptions, the nondimensional collision frequencies

and thermal conductivity are given by the following expressions.

ναα =
nα

T
3/2
α

(4.2.4a)

154

ναe√
2
=

√
mene

T
3/2
e

(4.2.4b)

κe,|| =
3.2√
2

T
5/2
e√
me

(4.2.4c)

4.2.1 The macroscopic system and kinetic fluxes

Taking the zeroth, first, and second order moments of the distribution function,

define the physical quantities

n(x, t)
.
=
〈
fα(x, v⊥, v||, t), 1

〉
, (4.2.5a)

(nu||)(x, t)
.
=
〈
fα(x, v⊥, v||, t), v||

〉
, (4.2.5b)

(nU)α(x, t)
.
=

〈
fα(x, v⊥, v||, t),

v2⊥ + v2||
2

〉
, (4.2.5c)

and the kinetic fluxes

Sα(x, t)
.
=
〈
v||fα(x, v⊥, v||, t), v||

〉
, (4.2.6a)

Qα(x, t)
.
=

〈
v||fα(x, v⊥, v||, t),

v2⊥ + v2||
2

〉
. (4.2.6b)

As shown in Appendix E, if fα is a Maxwellian distribution function, then the kinetic

fluxes reduce to

Sα(x, t) =
nTα
mα

+ nu2||, (4.2.7a)

Qα(x, t) = u||

(
(nU)α +

nTα
mα

)
. (4.2.7b)

Here mαn, mαnu|| and mα(nU)α are the local mass, momentum and ion energy den-

sities. Integrating over the spatial domain Ωx, the total mass, momentum and energy

are ∫
Ωx

mαn(x, t)dx, (4.2.8a)

155

∫
Ωx

mαnu||(x, t)dx, (4.2.8b)

∫
Ωx

mα

(
(nU)α +

3

2
neTe

)
(x, t)dx, (4.2.8c)

where the total energy consists of both the total ion and electron energies. Taking

the first three moments of equations (4.2.1), (4.2.2) and integrating over the spatial

domain Ωx, the macroscopic system is

0 =
d

dt

∫
Ωx

n(x, t)dx+
[
nu||
]
∂Ωx

, (4.2.9a)

0 =
d

dt

∫
Ωx

(nu||)(x, t)dx+

[
Sα −

qαnTe
qemα

]
∂Ωx

, (4.2.9b)

0 =
d

dt

∫
Ωx

(
(nU)α +

3

2
neTe

)
(x, t)dx+

[
Qα +

5

2
u||nTe − κe,||

∂Te
∂x

]
Ω∂x

. (4.2.9c)

Equations (4.2.9) are derived more carefully in Appendix E. In practice, the spatial

temperature gradient at infinity (i.e., ∂Ωx) is zero. If the boundary terms cancel,

the balance equations (4.2.9) reduce to the total mass, momentum and energy being

time-invariant.

There is another important relationship for the presented model. Assuming fα is

an arbitrary distribution function, which for our purposes is a reasonable assumption,

the ion temperature is given by

3nαTα = mα⟨fα, |v − u|2⟩. (4.2.10)

Expanding |v|2 = (v|| − u||)2 + u2|| + v2|| + 2u||(v|| − u||), it is straightforward to derive

the relationship

2(nU)α =
3nαTα
mα

+ nu2||. (4.2.11)

Equation (4.2.11) is derived in Appendix E. Note that the ion temperature Tα can

be expressed in terms of n, nu|| and (nU)α. Under the ambipolarity assumption and

156

equation (4.2.11), the second-order moment of the ion-electron Leonard-Bernstein-

Fokker-Planck operator can be expressed more simply as〈
|v|2

2
, Cαe

〉
v

=
3ναenα

mα

(Te − Tα) . (4.2.12)

Therefore, the fluid-electron energy equation (4.2.2) reduces to

3

2

∂pe
∂t

+
5

2

∂

∂x

(
u||pe

)
− u||

∂pe
∂x
− ∂

∂x

(
κe,||

∂Te
∂x

)
= 3ναenα (Tα − Te) . (4.2.13)

4.2.2 Scheme formulation: discretizing in physical space-time

The spatial domain [xleft, xright] is uniformly discretized with Nx nodes,

xleft = x1 < x2 < ... < xNx = xright.

The solution at each spatial node is a function of velocity and time, fα(v||, v⊥, t;x = xi).

Further discretizing in time, consider Nt uniform time-steps over the time interval

[0, Tf],

0 = t0 < t1 < ... < tNt = Tf ,

where each time-step is size ∆t. Taking a method-of-lines approach, we will update

the solution fα(v||, v⊥, t;x = xi) at each spatial node xi. We discretize in time using

the first-order implicit-explicit (IMEX) Runge-Kutta method, see Section 2.1.2.2. The

collision operator and acceleration term are stiff and evolved implicitly; the Vlasov

transport term is nonstiff and evolved explicitly. Discretizing equation (4.2.1) in space

and time, for each spatial node xi (i = 1, 2, ..., Nx),

fk+1
α,i −∆tCk+1

αα,i−∆tCk+1
αe,i+

qα
mα

∆tEk+1
||,i

∂fk+1
α,i

∂v||
= fk

α,i−v||
∆t

∆x

(
f̂k
α,i+ 1

2
− f̂k

α,i− 1
2

)
, (4.2.14)

where fk
α,i approximates fα(v||, v⊥;x = xi, t = tk), and f̂k

α,i+ 1
2

are the numerical fluxes

at the cell boundaries whose upwind direction is determined by the sign of v||.

157

The goal is to solve equation (4.2.14) at each spatial node xi. The solution

is known to be low-rank in velocity space; this is a key assumption for the proposed

scheme to be computationally advantageous. Following a step-and-truncate strategy

similar to Chapter 3, the updated solution at each spatial node will then be truncated

using the SVD. Although the scheme is described in greater detail later on, we start

by broadly outlining the major steps of the proposed scheme.

Outline of the proposed scheme (for each xi, i = 1, 2, ..., Nx)

0. Discretize the solution in velocity-space, fkα,i ≡ fk
α,i.

1. Discretize equation (4.2.14) in velocity-space and set up as a linear system.

*Note: the coupling with equation (4.2.2) occurs when discretizing the collision
operator and electric field.

2. (Add basis step). Solve equation (4.2.14) for fk+1,⋆
α,i , where the ⋆ denotes

the full-rank/pre-truncated solution. Updating the solution will increase the
rank/number of basis vectors.

3. (Remove basis step). Truncate fk+1,⋆
α,i using the SVD to obtain the low-rank

solution fk+1
α,i . Truncating the updated solution will decrease the rank by removing

redundant basis vectors.

4.2.3 Scheme formulation: discretizing in velocity space

The velocity domain in cylindrical coordinates [v||,left, v||,right] × [0, v⊥,right] is

uniformly discretized in each dimension with N|| and N⊥ nodes, respectively.

v||,left = v||,1 < v||,2 < ... < v||,N|| = v||,right

∆v⊥/2 = v⊥,1 < v⊥,2 < ... < v⊥,N⊥ = v⊥,right +∆v⊥/2

The perpendicular discretization is shifted by half a cell length ∆v⊥/2 so that

the origin is the left-most cell boundary and not a node. We found that the singularity

at the origin due to the Jacobian in the differential equation caused artificial energy to

enter the system if the origin was made a node.

158

The solution is discretized in velocity space in a low-rank format, e.g., the CP

format (see Section 3.1.1.3) or the DLR format (see Section 3.1.2.2). Discretizing

in velocity space, the solution at spatial node xi (i = 1, 2, ..., Nx) and time tk (k =

0, 1, ..., Nt) is

fk,⋆α,i =

Rk
i∑

r=1

cki,rU
(1),k
i,r ⊗U

(2),k
i,r , (4.2.15)

where Rk
i is the rank at node xi and time tk, ⋆ denotes the full-rank/pre-truncated

solution, ⊗ denotes the tensor product, {cki,r ∈ R : r = 1, 2, ..., Rk
i } are the transfer

coefficients, and {U(1),k
i,r ∈ RN|| : r = 1, 2, ..., Rk

i } and {U
(2),k
i,r ∈ RN⊥ : r = 1, 2, ..., Rk

i }

are the basis vectors in v|| and v⊥, respectively. Equation (4.2.15) can also be cast into

the form

fk,⋆α,i =

Rk
i∑

r=1

(
sgn(cki,r)

√
|cki,r|U

(1),k
i,r

)
⊗
(√
|cki,r|U

(2),k
i,r

)
. (4.2.16)

Dropping unnecessary superscripts and subscripts for the sake of simplicity, the solution

at each spatial node and time-step is

f⋆ =
R∑

r=1

crU
(1)
r ⊗U(2)

r . (4.2.17)

One can view this low-rank structure as the DLR framework with diagonal S

(see Section 3.1.2.2); or, one can view it as the CP format where ⊗ is the outer product

(see Section 3.1.1.3). But unlike the DLR methodology that updates one basis at a

time, the proposed scheme updates everything at once. Recall that the low-rank format

is not necessarily the same as the (reduced) SVD, although the SVD is a special case

of the low-rank format. The basis vectors need not be orthonormal, as we will see

after updating the solution. Furthermore, the vectors and transfer coefficients are not

necessarily ordered from “most important to least important.”

159

4.2.3.1 Computing the macroscopic quantities

Discretizing the collision operator and electric field on the lefthand side of equa-

tion (4.2.14) requires the macroscopic quantities nk+1, (nu||)
k+1, (nU)k+1

α and T k+1
e

since the lefthand side is evolved implicitly. To solve for
[
nk+1, (nu||)

k+1, (nU)k+1, T k+1
e

]T
we need four equations for four unknowns. The system of equations consists of the first

three moments of equation (4.2.14) and the semidiscrete form of the fluid-electron en-

ergy equation (4.2.13). (This is where the kinetic-ion and fluid-electron equations are

coupled). Assuming proper boundary conditions, the first three moments of equation

(4.2.14) yield (also see Appendix E)

0 = nk+1
i − nk

i +
∆t

∆x

(
n̂u||

k

i+ 1
2

− n̂u||ki− 1
2

)
, (4.2.18a)

0 = (nu||)
k+1
i − (nu||)

k
i +

∆t

∆x

(
Ŝk
α,i+ 1

2
− Ŝk

α,i− 1
2

)
− ∆t

2∆x

qα
mαqe

(
nk+1
i+1 T

k+1
e,i+1 − nk+1

i−1 T
k+1
e,i−1

)
,

(4.2.18b)

0 = (nU)k+1
α,i − (nU)kα,i +

∆t

∆x

(
Q̂k

α,i+ 1
2
− Q̂k

α,i− 1
2

)
− 3∆t

√
2
√
me

m2
α

(nk+1
i)2

(T k+1
e,i)3/2

(
T k+1
e,i −

mα

3

(
2Uk+1

α,i − (uk+1
||,i)2

))
− ∆t

2∆x

qα
mαqe

uk+1
||,i

(
nk+1
i+1 T

k+1
e,i+1 − nk+1

i−1 T
k+1
e,i−1

)
,

(4.2.18c)

where the pressure term is discretized using a directionally unbiased centered differ-

encing. The kinetic fluxes are computed using the midpoint rule to evaluate equations

(4.2.5b), (4.2.6a), and (4.2.6b) with

f̂k
α,i+ 1

2
=


fα,i, if v|| > 0,

fα,i+1, if v|| ≤ 0.

(4.2.19)

We assume Dirichlet boundary conditions in space for the local number density n,

drift velocity u, and ion temperature Tα. Using the macroscopic quantities of the

initial condition at the boundary, we establish fixed Maxwellian distributions at the

160

ghost cells, fMα,1/2 and fM
α,Nx+

1
2

. Note that the spatial boundary conditions are both

Dirichlet and zero-flux, that is, the macroscopic values are fixed and the slope is zero.

For the fourth equation we discretize the fluid-electron energy equation (4.2.13)

in space and time to get

0 = nk+1
i T k+1

e,i − nk
i T

k
e,i +

5∆t

3∆x

(
uk||,i+ 1

2
n̂T

k

e,i+ 1
2
− uk||,i− 1

2
n̂T

k

e,i− 1
2

)
− ∆t

3∆x
uk+1
||,i

(
nk+1
i+1 T

k+1
e,i+1 − nk+1

i−1 T
k+1
e,i−1

)
− 2∆t

3∆x2

(
κk+1
e,||,i+ 1

2

(T k+1
e,i+1 − T k+1

e,i)− κk+1
e,||,i− 1

2

(T k+1
e,i − T k+1

e,i−1)

)
− 2∆t

√
2
√
me

mα

(nk+1
i)2

(T k+1
e,i)3/2

(
mα

3

(
2Uk+1

α,i − (uk+1
||,i)2

)
− T k+1

e,i

)
,

(4.2.20)

where the drift velocity and thermal conductivity at the cell boundaries are computed

via averaging,

u||,i+ 1
2

.
=
u||,i + u||,i+1

2
, (4.2.21a)

κe,||,i+ 1
2

.
=
κ||,i + κ||,i+1

2
. (4.2.21b)

The sign of u||,i+ 1
2
determines the upwind direction for the numerical flux n̂T

k

e,i+ 1
2
. Solv-

ing for nk+1 =
[
nk+1
1 , ..., nk+1

Nx

]T
is straightforward with equation (4.2.18a). A quasi-

Newton solver is used to solve the system of equations (4.2.18b), (4.2.18c), (4.2.20) for

the other three quantities

(nu||)
k+1 =

[
(nu||)

k+1
1 , ..., (nu||)

k+1
Nx

]T
, (nU)k+1

α =
[
(nU)k+1

α,1 , ..., (nU)
k+1
α,Nx

]T
,

Tk+1
e =

[
T k+1
e,1 , ..., T k+1

e,Nx

]T
.

Rather than compute the full Jacobian J of the system, we use a linear approximation

of the Jacobian, P ≈ J, that ignores negligably small terms based on the dimensional

analysis in Appendix D. Letting R denote the residual and ℓ denote the iteration

161

counter in the quasi-Newton solver, we solve the linearized system

−


R

(ℓ)
nu||

R
(ℓ)
(nU)α

R
(ℓ)
Te


3Nx×1

=


P

(ℓ)
nu||,nu|| P

(ℓ)
nu||,(nU)α

P
(ℓ)
nu||,Te

P
(ℓ)
(nU)α,nu||

P
(ℓ)
(nU)α,(nU)α

P
(ℓ)
(nU)α,Te

P
(ℓ)
Te,nu||

P
(ℓ)
Te,(nU)α

P
(ℓ)
Te,Te


3Nx×3Nx


δ(nu||)

(ℓ+1)

δ(nU)(ℓ+1)
α

δT
(ℓ+1)
e


3Nx×1

(4.2.22)

for the updated macroscopic quantities until a specified tolerance is satisfied. In our

numerical tests we terminate the solver if two tolerances are satisfied,

∥∥∥R(ℓ)
∥∥∥
∞
< min

{
5.0× 10−12, 5.0× 10−10

∥∥∥Rk
∥∥∥
∞

}
. (4.2.23)

Theoretically, the residual should be zero when using the full Jacobian. We

enforce this by ensuring the infinity norm of the residual is just larger than 1.0E − 13

and roughly 1.0E − 10 times the norm of the residual at the previous time-step. We

remark that the solver converged within a few iterations in our numerical tests. Letting

yk .
=


(nu||)

k

(nU)kα

Tk
e


3Nx×1

,

equation (4.2.22) can be written more simply as

−R(ℓ) = P(ℓ)δy(ℓ+1). (4.2.24)

The exact expressions for the residual R and approximate Jacobian P can be

found in Appendix G. Note that as seen in equation (4.2.22), the approximate Jacobian

is a block matrix. And as seen in Appendix G, each block matrix is at most tridiagonal.

This structure of P dramatically reduces the computational cost of the quasi-Newton

solver. The quasi-Newton solver used to compute the updated macroscopic quantities

is outlined in Algorithm 4.2.

162

Algorithm 4.2. A quasi-Newton solver for computing updated macroscopic quantities

Inputs: yk and nk.

Outputs: yk+1 and nk+1.

1. Compute nk+1 using equation (4.2.18a).

2. Set residualnorm = 1, tol = min
{
5.0E − 12, 5.0E − 10

∥∥Rk
∥∥
∞

}
, ℓ = 0.

3. Set y(ℓ) = yk.

4. Compute R(ℓ) = Rk and P(ℓ) = Pk.

while residualnorm > tol

5a. Solve −R(ℓ) = P(ℓ)δy(ℓ+1) for δy(ℓ+1).

5b. Set y(ℓ+1) = y(ℓ) + δy(ℓ+1).

5c. Override y(ℓ) := y(ℓ+1).

5d. Compute and override R(ℓ) and P(ℓ).

5e. Compute and override residualnorm =
∥∥∥R(ℓ)

∥∥∥
∞
.

5f. Override ℓ := ℓ+ 1.

6. Set yk+1 = y(ℓ).

4.2.3.2 Discretizing the collision operator

With the updated macroscopic quantities computed, the implicitly treated Leonard-

Bernstein-Fokker-Planck collision operator Ck+1
αα,i + Ck+1

αe,i can be discretized in velocity

space. We discretize the collision operator using the SPCC method [139] for to its

robustness and structure preservation (see Section 4.1.1). The SPCC method in [139]

is presented in Cartesian coordinates but can easily be extended to cylindrical coordi-

nates. Furthermore, the proven structure preservation of the SPCC method was only

for the Fokker-Planck equation without a Vlasov component; and it was only for the

full-rank/non-truncated solution. Proving the same structure preservation holds for

our VLBFP model and low-rank framework is non-trivial. Yet, our numerical tests

163

observe the same structure-preserving qualities and suggest that the robustness of the

SPCC discretization holds in our proposed scheme.

Without loss of generality, we only consider Cαe since discretizing Cαα follows

similarly. Moreover, we drop the subscript i and superscript k + 1 for notational ease.

It should be assumed that the discretizations in this subsection use values at spatial

node xi and time-level tk+1, e.g.,

Cαe ←→ Ck+1
αe,i

f ⋆
α ←→ fk+1,⋆

α,i

n, u||, Tα, Te ←→ nk+1
i , uk+1

||,i , T
k+1
α,i , T

k+1
e,i

Expressing Cαe in the differential form used in [139],

Cαe

ναe
=

1

v⊥

∂

∂v⊥

(
v⊥

(
B⊥[fα](v⊥, t)fα +D⊥[fα](v⊥, t)

∂fα
∂v⊥

))

+
∂

∂v||

(
B||[fα](v||, t)fα +D||[fα](v||, t)

∂fα
∂v||

)
,

(4.2.25)

where B⊥[fα](v⊥, t) = v⊥, B||[fα](v||, t) = v|| − u|| and D⊥[fα](v⊥, t) = D||[fα](v||, t) =

Te/mα. Note that although D⊥ and D|| are functionals dependent on fα, their velocity

derivatives are zero. Defining the fluxes

F (⊥)[fα](v⊥, t)
.
= B⊥[fα](v⊥, t)fα +D⊥[fα](v⊥, t)

∂fα
∂v⊥

, (4.2.26a)

F (||)[fα](v||, t)
.
= B||[fα](v||, t)fα +D||[fα](v||, t)

∂fα
∂v||

, (4.2.26b)

the collision operator can be rewritten

Cαe

ναe
=

1

v⊥

∂

∂v⊥

(
v⊥F (⊥)[fα](v⊥, t)

)
+

∂

∂v||

(
F (||)[fα](v||, t)

)
. (4.2.27)

The Jacobian v⊥ in the v⊥-direction does not affect the equilibrium preservation of

164

the SPCC scheme since v⊥F (⊥) = 0 ⇒ F (⊥) = 0 (see [36, 139] and Section 4.1.1 for

how equilibrium preservation is enforced). Recall that the origin v⊥ = 0 is not a nodal

point to avoid the singularity 1/v⊥.

We discretize each flux function separately. There is a very important obser-

vation to remark – each flux function is independent of the other direction, that is,

F (⊥) = F (⊥)[fα](v⊥, t) and F (||) = F (||)[fα](v||, t). As such, e.g., the same discretization

for F (⊥)[fα](v⊥, t) can be used for all v|| values. Otherwise, each value of v|| would

require a different discretization for F (⊥)[fα](v⊥, t; v||).

SPCC discretization in the v||-direction

The parallel flux term is discretized the same way as the SPCC scheme in

Cartesian coordinates. The SPCC discretization in the v||-direction is

[
ναe

∂

∂v||

(
F (||)

)]
(v||,j1 ,v⊥,j2

)

≈ ναe

F (||)
j1+

1
2
,j2
−F (||)

j1− 1
2
,j2

∆v||

 , (4.2.28)

where

F (||)
j1+

1
2
,j2

= A
(||)
j1+

1
2

((
1− δ(||)

j1+
1
2

)
f⋆α,j1+1,j2

+ δ
(||)
j1+

1
2

f⋆α,j1,j2

)
+

D||

∆v||

(
f⋆α,j1+1,j2

− f⋆α,j1,j2

)
,

(4.2.29a)

A
(||)
j1+

1
2

=
1

∆v||

∫ v||,j1+1

v||,j1

B⊥(v||, tk+1)dv||, (4.2.29b)

λ
(||)
j1+

1
2

=
∆v||
D||

A
(||)
j1+

1
2

, (4.2.29c)

δ
(||)
j1+

1
2

=
1

λ
(||)
j1+

1
2

+
1

1− exp(λ
(||)
j1+

1
2

)
. (4.2.29d)

SPCC discretization in the v⊥-direction

The perpendicular flux term is discretized similarly to the parallel flux term

165

with the addition of the Jacobian v⊥. The SPCC discretization in the v||-direction is

[
ναe
v⊥

∂

∂v⊥

(
v⊥F (⊥)

)]
(v||,j1 ,v⊥,j2

)

≈ νk+1
αe

v⊥,j2

v⊥,j2+
1
2
F (⊥)

j1,j2+
1
2

− v⊥,j2− 1
2
F (⊥)

j1,j2− 1
2

∆v⊥

 . (4.2.30)

where

F (⊥)

j1,j2+
1
2

= A
(⊥)

j2+
1
2

((
1− δ(⊥)

j2+
1
2

)
f⋆α,j1,j2+1 + δ

(⊥)

j2+
1
2

f⋆α,j1,j2

)
+

D⊥

∆v⊥

(
f⋆α,j1,j2+1 − f⋆α,j1,j2

)
,

(4.2.31a)

A
(⊥)

j2+
1
2

=
1

∆v⊥

∫ v⊥,j2+1

v⊥,j2

B⊥(v⊥, tk+1)dv⊥, (4.2.31b)

λ
(⊥)

j2+
1
2

=
∆v⊥
D⊥

A
(⊥)

j2+
1
2

, (4.2.31c)

δ
(⊥)

j2+
1
2

=
1

λ
(⊥)

j2+
1
2

+
1

1− exp(λ
(⊥)

j2+
1
2

)
. (4.2.31d)

Since v⊥ cannot take on negative values, the integralA
(⊥)
1
2

is over the interval (0,∆v⊥/2).

4.2.3.3 Discretizing the acceleration term

Using the updated macroscopic quantities computed, we discretize the accelera-

tion term in (4.2.14) involving the electric field. The electric field at each spatial node

xi, i = 1, 2, ..., Nx is approximated with centered differences on Ohm’s law,

Ek+1
||,i =

1

qen
k+1
i

nk+1
i+1 T

k+1
e,i+1 − nk+1

i−1 T
k+1
e,i−1

2∆x
. (4.2.32)

Using equation (4.2.32) to determine the proper upwind direction,

[
qα
mα

Ek+1
||,i

∂fk+1
α,i

∂v||

]
(v||,j1 ,v⊥,j2

)

≈ qα
mα

DE

(
fk+1,⋆
α,i

)
, (4.2.33)

166

where

DE

(
fk+1,⋆
α,i

)
= max

(
Ek+1

||,i , 0
) fk+1,⋆

α,i,j1,j2
− fk+1,⋆

α,i,j1−1,j2

∆v||
+min

(
Ek+1

||,i , 0
) fk+1,⋆

α,i,j1+1,j2
− fk+1,⋆

α,i,j1,j2

∆v||
.

(4.2.34)

4.3 Updating and truncating the discretized equation

Section 4.2 described how to discretize the stiff terms on the lefthand side of

equation (4.2.14). With that done, equation (4.2.14) can be expressed as a linear

system of tensor-product structure, and the updated full-rank/pre-truncated solution

fk+1,⋆
α,i can be computed at all spatial nodes xi, i = 1, 2, ..., Nx. Then, a SVD basis

removal procedure can be used to obtain the low-rank/truncated solution fk+1
α,i .

4.3.1 Solving a linear system of tensor-product structure

Referring to the solver [79] outlined in Section (4.1.2), for each i = 1, 2, ..., Nx

we want to express equation (4.2.14) in the form

(
A||,i ⊗ IN⊥×N⊥ + IN||×N|| ⊗A⊥,i

)
fk+1,⋆
α,i = bi, (4.3.1)

where A||,i and A⊥,i are the discretizations of the lefthand side of equation (4.2.14) in

the parallel and perpendicular directions, respectively; and bi is the righthand side of

equation (4.2.14).

Let A
(||)
αe,i and A

(||)
αα,i be the matrix representations of discretization (4.2.28) for

the parallel terms of Ck+1
αe,i and Ck+1

αα,i, respectively. Similarly, let A
(⊥)
αe,i and A

(⊥)
αα,i be the

matrix representations of discretization (4.2.30) for the perpendicular terms of Ck+1
αe,i

and Ck+1
αα,i, respectively. Let A

(||)
E,i be the matrix representation of discretization (4.2.33).

All together,

A||,i
.
=

1

2
IN||×N|| −∆tA

(||)
αα,i −∆tA

(||)
αe,i +∆tA

(||)
E,i, (4.3.2)

A⊥,i
.
=

1

2
IN⊥×N⊥ −∆tA

(⊥)
αα,i −∆tA

(⊥)
αe,i. (4.3.3)

167

And referring to solution (4.2.15) and the righthand side of equation (4.2.14),

bi
.
=

Rk
i∑

r=1

cki,rU
(1),k
i,r ⊗U

(2),k
i,r

− ∆t

∆x

Rk
i+1∑

r=1

cki+1,r

(
min(v||,0) ∗U(1),k

i+1,r

)
⊗U

(2),k
i+1,r −

Rk
i∑

r=1

cki,r

(
min(v||,0) ∗U(1),k

i,r

)
⊗U

(2),k
i,r


− ∆t

∆x

 Rk
i∑

r=1

cki,r

(
max(v||,0) ∗U(1),k

i,r

)
⊗U

(2),k
i,r −

Rk
i−1∑

r=1

cki−1,r

(
max(v||,0) ∗U(1),k

i−1,r

)
⊗U

(2),k
i−1,r

 ,
(4.3.4)

where ∗ denotes the Hadamard (elementwise) product. To utilize Grasedyck’s solver

[79] outlined in Algorithm 4.1, bi needs to be expressed in the form (4.2.16). After

which, Algorithm 4.1 can be used to compute the updated full-rank/pre-truncated

solution, fk+1,⋆
α,i . Using the same notation as equation (4.1.9), the updated transfer

coefficients are the coefficients

2wj/λmin,

and the updated basis vectors in the parallel and perpendicular directions are respec-

tively

exp

(
2tj
λmin

A1

)
bki and exp

(
2tj
λmin

A2

)
bki .

Referring to equations (4.1.9) and (4.3.4), the updated full-rank/pre-truncated solution

fk+1,⋆
α,i =

Rk+1
i∑
r=1

ck+1
i,r U

(1),k+1
i,r ⊗U

(2),k+1
i,r

is rank Rk+1
i = (3Rk

i + Rk
i−1 + Rk

i+1)(2K + 1), where 2K + 1 is the number of Stenger

nodes/weights (which typically ranges from 31 to 301).

168

4.3.2 SVD truncation

The high-rank updated solution fk+1,⋆
α,i necessitates the need to truncate and

remove redundant basis vectors. Consider the updated solution stored as the matrix

product

fk+1,⋆
α,i = U

(1),k+1
i Ck+1

i (U
(2),k+1
i)T , (4.3.5)

where Ck+1
i is diagonal, but the columns of U

(1),k+1
i and U

(2),k+1
i need not be orthogo-

nal. Since the columns of U
(1),k+1
i and U

(2),k+1
i are not normalized, simply truncating

the SVD of Ck+1
i will not correctly compute the optimal low-rank approximation.

Since we are just in two dimensions, computing the matrix multiplication (4.3.5)

and then computing the SVD has a reasonable computational cost. Assuming N|| =

N⊥ = N and letting Rk+1
i = R be the rank (where R could be larger than N), the

matrix multiplication requires O(NR2+N2R) flops. Computing the SVD of the N×N

solution then requires O(N3) flops.

In short, we compute the SVD of solution (4.3.5) and keep the singular val-

ues (and the corresponding singular vectors) larger than some tolerance ϵ > 0. The

numerical tests in this chapter set ϵ ∈ [1.0E − 06, 1.0E − 04]. Redefine

U
(1),k+1
i Ck+1

i (U
(2),k+1
i)T := svd

(
fk+1,⋆
α,i

)
= svd

(
U

(1),k+1
i Ck+1

i (U
(2),k+1
i)T

)
.

Redefining the rank Rk+1
i as the number of singular values larger than ϵ > 0, the

low-rank/truncated solution is

fk+1
α,i

.
=

Rk+1
i∑
r=1

ck+1
i,r U

(1),k+1
i,r ⊗U

(2),k+1
i,r . (4.3.6)

4.3.3 The first-order scheme

We summarize the proposed first-order scheme below in Algorithm 4.3. The

solution fk+1
α,i at each spatial node xi has rank Rk+1

i , for i = 1, 2, ..., Nx. To measure

169

how the overall rank evolves in time, we compute and store the average rank

Rk+1 .
=

1

Nx

Nx∑
i=1

Rk+1
i . (4.3.7)

Algorithm 4.3. The first-order scheme with IMEX(1,1,1)

Inputs: fkα,i and rank Rk
i , for i = 1, 2, ..., Nx.

Outputs: fk+1
α,i and rank Rk+1

i , for i = 1, 2, ..., Nx.

Compute nk+1, (nu||)
k+1, (nU)k+1

α and T k+1
e using Algorithm 4.2.

do i = 1, 2, ..., Nx

1a. Compute the discretizations A||,i and A⊥,i, see equations (4.3.2).

1b. Compute bi, see equation (4.3.4).

2. Solve (4.3.1) for fk+1,⋆
α,i using Algorithm 4.1.

3. Compute the matrix product (4.3.5) and compute its SVD.

4. Truncate the SVD according to tolerance ϵ > 0.

5. Define the low-rank solution fk+1
α,i and rank Rk+1

i , see equation (4.3.6).

4.4 Numerical tests

We present numerical results verifying the proposed scheme’s performance, low-

rank structure, and observed structure-preserving qualities. Only the single ion species

case is considered, and the proposed scheme is tested on both the Vlasov-Leonard-

Bernstein-Fokker-Planck and the Leonard-Bernstein-Fokker-Planck equations. The fol-

lowing results were computed on the same computer mentioned in Chapter 3, Section

3.3.1.

Unless otherwise stated, we use a time-stepping size ∆t = 0.3 and a 7-point

Gauss-Legendre quadrature (see Section 2.1.4) to approximate the integrals in the

SPCC discretization. We are still limited by the CFL condition from the explicit

170

treatment of the Vlasov transport term, but ∆t = 0.3 is small enough for the spatial

meshes considered in this section. Parameter K denotes using 2K +1 Stenger quadra-

ture nodes/weights in Algorithm 4.1. Parameter ϵ > 0 denotes the tolerance used to

truncate the SVD, see Algorithm 4.3.

4.4.1 The 0D2V Leonard-Bernstein-Fokker-Planck equation

Low-rank structure and observed structure-preserving qualities are verified on

the (nondimensionalized) Leonard-Bernstein-Fokker-Planck equation,

∂fα
∂t

= ναα∇v ·
(
Tα
mα

∇vfα + (v − uα)fα

)
, (4.4.1)

where the mass and charge are scaled to unity, mα = 1 and qα = 1, and the velocity

mesh is (v||, v⊥) ∈ [−14, 16]×[0, 14]. Equation (4.4.1) lacks physical-spatial dependence

and is not coupled with the fluid-electron energy equation (4.2.2). As such, Algorithm

4.3 only acts on a single loop (i.e., a single spatial node) and does not require the

quasi-Newton solver in Algorithm 4.2. Referring to Appendix E, the zeroth-, first- and

second-order moments of equation (4.4.1) (without spatial dependence and Cαe) imply

that
[
n, nu||, (nU)α

]k
=
[
n, nu||, (nU)α

]k+1
. Hence, we use the local macroscopic quan-

tities from the initial condition (or from the equilibrium solution) in the discretization

of the LBFP collision operator.

The first-order IMEX scheme reduces to the first-order backward Euler scheme

since Cαα is evolved implicitly. Although time-stepping sizes larger than ∆t = 0.3

can be used, we still use ∆t = 0.3 to minimize the error from the time-stepping and

stay consistent with the results for the VLBFP equation. The initial time-step is size

∆t0 = 5 × 10−3 to allow the initial dynamics to be captured more accurately, but

∆t = 0.3 is used for all subsequent time-steps.

The presented results for equation (4.4.1) assume a Maxwellian equilibrium

solution

fM(v||, v⊥) =
n

(2πRT)3/2
exp

(
−
(v|| − u||)2 + v2⊥

2RT

)
, (4.4.2)

171

where gas constant R = 1, number density n = π, bulk velocity u = 0 and temperature

T = 3. The equilibrium distribution function is shown in Figure 4.3(a).

When testing the relaxation of the system, we set the initial distribution function

as the sum of two randomly generated Maxwellians, f(v||, v⊥, t = 0) = fM1(v||, v⊥) +

fM2(v||, v⊥), such that the total macroscopic parameters of the equilibrium distribu-

tion function are preserved. That is, the total number density, bulk velocity and

temperature are n = π, u = 0 and T = 3. The number densities, bulk velocities and

temperatures of each Maxwellian are listed in Table 4.1. We set u⊥ = 0 so that the two

Maxwellians only shift in the v̂||-direction. The initial distribution function is shown

in Figure 4.2(a).

fM1 fM2

n 1.902813990281176 1.238778663308618
u|| -2.113532196926305 3.246470699196378
u⊥ 0 0
T 1.10608227396894 0.1087698976066122

Table 4.1: R = 1, n = π, v = 0 and T = 3.

Although the structure-preserving qualities of the SPCC discretization are non-

trivial to prove for the proposed scheme, particularly due to truncation, we still observe

some of the same behaviors as shown in the results in [139]. There are essentially four

components that can affect the error: time-stepping size ∆t, mesh size ∆v|| and ∆v⊥,

the singular value tolerance ϵ > 0, and the Stenger quadrature K. The time-stepping

size is fixed for our simulations at ∆t = 0.3. Unfortunately, depending on the prob-

lem, the Stenger quadrature as applied in Algorithms 4.1 and 4.3 roughly requires

K ∈ [15, 200] to achieve three to four digits of accuracy.

For the base test, we use mesh 400 × 400, Stenger quadrature K = 200, and

tolerance ϵ = 1.0E − 05. The base test is represented by the black lines in Figures 4.2

and 4.3. As seen in the figures, the base test observes low rank, equilibrium preservation

as indicated by the L1 decay, and discrete relative entropy dissipation. Moreover,

172

the parameters ∆t, ∆v||, ∆v⊥, ϵ and K only captures the equilibrium solution with

O(1.0E − 04) accuracy. We adjust the mesh size and the SVD tolerance to check how

they affect the observables.

In addition to the base test, Figures 4.2(b)-(d) show what happens if ϵ = 1.0E−

02 (while keeping the other parameters unchanged). Figure 4.2(b) shows that the rank

decreases with smaller ϵ since the singular values are truncated to a smaller tolerance.

Figure 4.2(c) shows that decreasing ϵ to 1.0E−02 also lowered the accuracy with which

the equilibrium solution is captured to O(1.0E − 02). Figure 4.2(d) shows that the

discrete relative entropy dissipates at the same rate for both tolerances.

In addition to the base test, Figures 4.3(b)-(d) show what happens if the mesh

is 200×200 (while keeping the other parameters unchanged). Figure 4.3(b) shows that

the rank remains the same for both mesh sizes. Figure 4.3(c) shows that the coarser

mesh 200× 200 lowered the accuracy with which the equilibrium solution is captured

to O(1.0E − 03). Figure 4.3(d) shows that the discrete relative entropy dissipates at

the same rate for both mesh sizes.

The major takeaways from these results are that low-rank structure is enforced,

and equilibrium-preservation and relative entropy dissipation are observed. Recall

that the rank of the pre-truncated solution at each time-step is O(2K + 1) which for

K = 200 is quite massive. Figures 4.2(b) and 4.3(b) show that the truncated solution

is less than rank 10. This is a huge savings in both storage and computational cost

since the rank would grow exponentially without truncation; this is due to the solver

used for updating the solution.

It is also important to note that Figures 4.2 and 4.3 only give insight to how ∆v||,

∆v⊥, ϵ and K can affect the solution. The extent to which changing these parameters

affect the solution will slightly change depending on the problem.

4.4.2 The 1D2V Vlasov-Leonard-Bernstein-Fokker-Planck equation

Low-rank structure and the scheme’s performance are presented. We simulate

the 1D2V Mach-5 steady-state shock problem from [162]. The spatial domain is x ∈

173

(a)

(c)

(b)

(d)

Figure 4.2: Mesh 400×400, time-stepping size ∆t = 0.3, Stenger quadrature K = 200,
tolerances ϵ = 1.0E − 05 and ϵ = 1.0E − 02. Figure (a): initial distribution of two
Maxwellians defined by Table 4.1. Figure (b): rank evolution. Figure (c): L1 error,
∥fα − fM∥1. Figure (d): discrete Kullback relative entropy, H∆(fα, fM).

[0, 200] and the velocity domain is (v||, v⊥) ∈ [−8, 10]× [0, 8]. An initial shock occurs at

x = 100 with constant downstream and upstream plasma conditions. The normalized

plasma conditions downstream of the shock are number density n = 1, drift velocity

u|| = 0.8676, and temperature T = 1. The normalized plasma conditions upstream of

the shock are number density n = 0.28, drift velocity u|| = 3.0984, and temperature

T = 0.1152. As seen in Figure 4.4(a), the initial shock is smoothed with hyperbolic

174

(a)

(c)

(b)

(d)

Figure 4.3: Time-stepping size ∆t = 0.3, Stenger quadrature K = 200, tolerance
ϵ = 1.0E − 05, meshes 200 × 200 and 400 × 400. Figure (a): equilibrium distribution
function, fM . Figure (b): rank evolution. Figure (c): L1 error, ∥fα − fM∥1. Figure
(d): discrete Kullback relative entropy, H∆(fα, fM).

tangents whose profiles are given by

n(x, t = 0) = 0.36 tanh [0.05(x− 100)] + 0.64, (4.4.3a)

u||(x, t = 0) = −1.1154 tanh [0.05(x− 100)] + 1.983, (4.4.3b)

T (x, t = 0) = 0.4424 tanh [0.05(x− 100)] + 0.5576. (4.4.3c)

175

The ion and electron temperatures are equal at the boundary, and Tα(x, t =

0) = Te(x, t = 0). The other normalized parameters are proton mass mα = 1, electron

mass me = 1/1836, proton charge qα = 1, and electron charge qe = −1. Recall that

the Maxwellian distributions constructed at the boundaries by the initial shock define

the Dirichlet boundary conditions in space.

(a) (b)

Figure 4.4: Figure (a): initial shock (4.4.3) for the 1D2V VLBFP test. The smoothed
number density, drift velocity, ion temperature and electron temperature profiles are
shown. Spatial mesh Nx = 80. Figure (b): average nodal rank.

The results for this test use a spatial mesh Nx = 80, velocity mesh N|| ×N⊥ =

120 × 120, singular value tolerance ϵ = 1.0E − 05, and Stenger quadrature K = 15.

The initial time-step is size ∆t0 = 5×10−3 to allow the initial dynamics to be captured

more accurately, but ∆t = 0.3 is used for all subsequent time-steps.

Figure 4.4(b) shows that the scheme is maintaining the low-rank structure of

the solution, with the average nodal rank varying between 1.5 and 1.7. Given that

the pre-truncated solution at each time-step has rank O(2K + 1) = O(31), this in-

dicates significant storage and computational savings. Figures 4.5(a)-(d) show the

evolution of the total mass, momentum, energy and electron pressure. All four quan-

tities grow indefinitely in our results, whereas they should relax when approaching

relaxation/equilibrium. This indicates lack of conservation in our method, most likely

176

from a pumping or depleting of energy. Pumping/depleting of energy in a system can

cause unphysical acoustic (pressure) waves to form. Aside from the electron tempera-

ture, the total electron pressure is the fastest to relax. Since all four quantities start

growing around time t = 50, this suggests that energy pumping/depletion might be

source of conservation loss (from a physics-informed perspective).

Mathematically, the loss of conservation is caused by the SVD truncation. Al-

though the basis removal procedure offers the optimal low-rank solution (by virtue

of the SVD), it is well-known that the SVD destroys conservation [84, 85]. However,

the focus of the proposed method was computing low-rank solutions, not enforcing

conservation. To enforce conservation, other truncation algorithms need to be con-

sidered. One such algorithm is the local macroscopic conservative (LoMaC) low-rank

tensor method [85]. This truncation algorithm enjoys the exact local conservation of

macrosopic mass, momentum and energy at the discrete level.

The profiles of the macroscopic quantities are shown in Figure 4.6 at various

snapshots in time. Since conservation is not enforced, one cannot hope to observe the

correct profiles, which can be found in [162]. The spatial boundary conditions taken

from the initial distribution function in Figure 4.4(a) are not maintained in the solution.

The number density at x = 200 is not n = 1 at equilibrium, and the spatial slopes at

x = 200 of the number density and temperatures are not zero. Once conservation is

enforced in the proposed scheme, we hope to obtain results consistent with those in

[162].

Table 4.2 shows the average CPU runtime per time-step using Algorithm 4.3, as

well as how much of the CPU runtime was spent on the solving the linear system. As

seen in the table, 99.16% of the CPU runtime was spent on solving the linear system

for the pre-truncated updated solution. Moreover, these results were for a very modest

Stenger quadrature of K = 15. Hence, the proposed scheme is prohibitively expensive

for large K and motivates the need for other solvers in future work. Note that the

CPU runtimes shown in Table 4.2 accounts for a single time-step over all Nx = 80

spatial nodes. There are two silver linings to this result. First, the proposed scheme is

177

(a)

(c)

(b)

(d)

Figure 4.5: Time-stepping size ∆t0 = 5 × 10−3 and ∆tk = 0.3, k = 1, ..., Nt, Stenger
quadrature K = 15, tolerance ϵ = 1.0E − 05, spatial mesh Nx = 80, velocity mesh
120×120. Figure (a): total mass (4.2.8a). Figure (b): total momentum (4.2.8b). Figure
(c): total energy (4.2.8c). Figure (d): total electron pressure pe(x, t) = (neTe)(x, t).

highly parallelizable since the solution at each spatial node can be solved independently.

Although we did not implement this in our test, doing so would theoretically reduce

the CPU runtime by a factor of Nx. Second, there is much room for improvement.

Using more efficient solvers, such as Krylov subspace solvers, to update the solution

can significantly improve the usability of the scheme.

178

Figure 4.6: Various snapshots of the numerical solution to the 1D2V VLBFP equation
with initial distribution 4.4.3. Time-stepping size ∆t0 = 5 × 10−3 and ∆tk = 0.3,
k = 1, ..., Nt, Stenger quadrature K = 15, tolerance ϵ = 1.0E − 05, spatial mesh
Nx = 80, velocity mesh 120× 120. Times: 25, 50, 75, 100, 125, 150.

179

CPU runtime for Step 2 Total CPU runtime Ratio:
(Algorithm 4.3) for Algorithm 4.3 (Step 2 runtime)/(Total runtime)
91.7946 seconds 92.5764 seconds 99.16%

Table 4.2: The average CPU runtime per time-step simulating the VLBFP equation
to relaxation. Spatial mesh Nx = 80, velocity mesh N|| × N⊥ = 120 × 120, singular
value tolerance ϵ = 1.0E − 05, Stenger quadrature K = 15.

4.5 Conclusions and follow-up work

In this chapter we proposed a low-rank scheme for solving the 1D2V VLBFP

equation using a hybrid kinetic-ion fluid-electron model. The low-rank structure was

incorporated by discretizing in space and evolving a low-rank 2V solution at each spatial

node. The LBFP collision operator was discretized using the structure-preserving

SPCC method [139], which we extended to cylindrical coordinates. The solution was

updated using a solver for linear systems of tensor product structure [79], and the SVD

was used to truncate the updated solution. The proposed scheme was tested on the

0D2V LBFP equation and 1D2V VLBFP equation at relaxation. Results showed the

structure-preserving qualities from the SPCC discretization are observed, and that

the low-rank structure is enjoyed. Despite these two positives, the scheme is not

conservative by virtue of the SVD truncation, and the implicit solver [79] made up

a majority of the runtime. Furthermore, the Stenger quadrature used in the linear

solver has a great affect on the accuracy of the results; K ∈ [15, 200] only gave three

to four digits of accuracy in our tests. However, this opens the door for significant

improvements. Ongoing and future work includes using the DLR inspired algorithm in

Chapter 3 to replace the implicit solver, and implementing the conservative truncation

presented in [85]. Both modifications would address and improve the two downsides

to the proposed scheme. Lastly, the current scheme is held back by a CFL condition

due to the explicit treatment of the Vlasov transport term. Ultimately, we would like

to use a semi-Lagrangian [142] or Eulerian-Lagrangian [133] method (see Chapter 2)

to evolve the Vlasov transport term to allow large time-stepping sizes.

180

BIBLIOGRAPHY

[1] I.G. Abel, et al., Linearized model Fokker-Planck collision operators for gyroki-
netic simulations. I. Theory, Physics of Plasmas, 15:12 (2008), pp. 122509.

[2] E. Abreu, W. Lambert, J. Perez, and A. Santo, A new finite volume approach for
transport models and related applications with balancing source terms, Math. and
Comput. in Simul., 137 (2017), pp. 2-28.

[3] M. Ahn, et al., On large-scale dynamic topic modeling with nonnegative CP tensor
decomposition, Advances in Data Science, (2021), pp. 181-210.

[4] R. Alexander, Diagonally implicit Runge-Kutta methods for stiff ODE’s, SIAM
J. Numer. Anal., 14:6 (1977), pp. 1006-1021.

[5] E. Anderson, et al., LAPACK users’ guide, SIAM, (1999).

[6] S.E. Anderson, W.T. Taitano, L. Chacon, and A.N. Simikov, An efficient, conser-
vative, time-implicit solver for the fully kinetic arbitrary-species 1D-2V Vlasov-
Ampere system, J. Comput. Phys., 419 (2020), pp. 109686.

[7] T. Arbogast, C.-S. Huang, and X. Zhao, Finite volume WENO schemes for non-
linear parabolic problems with degenerate diffusion on non-uniform meshes, J.
Comput. Phys., 399 (2019), pp. 108921.

[8] T. Arbogast, C.-S. Huang, X. Zhao, and D.N. King, A third order, implicit, finite
volume, adaptive Runge–Kutta WENO scheme for advection–diffusion equations,
Comp. Meth. in Appl. Mech. and Eng., 368 (2020), pp. 113155.

[9] A.A. Arsen’ev and O.E. Buryac, On the connection between a solution of the
Boltzmann equation and a solution of the Landau-Fokker-Planck equation, USSR
Comput. Maths math. Phys., 17 (1991), pp. 241-246.

[10] U.M. Ascher, S.J. Ruuth, and R.J. Spiteri, Implicit-explicit Runge-Kutta meth-
ods for time-dependent partial differential equations, App. Numer. Math., 25:2-3
(1997), pp. 151-167.

[11] D.S. Balsara, S. Garain, and C.-W. Shu, An efficient class of WENO schemes with
adaptive order, J. Comput. Phys., 326 (2016), pp. 780-804.

181

[12] D.S. Balsara, S. Garain, V. Florinski, and W. Boscheri, An efficient class of WENO
schemes with adaptive order for unstructured meshes, J. Comput. Phys., 404
(2020), pp. 109062.

[13] M. Barnes, et al., Linearized model Fokker-Planck collision operators for gyroki-
netic simulations. II. Numerical implementation and tests, Physics of Plasmas,
16:7 (2009), pp. 072107.

[14] R.H. Bartels and G.W. Stewart, Solution of the matrix equation AX+BX=C,
Communications of the ACM, 15:9 (1972), pp. 820-826.

[15] F. Benkhaldoun, S. Sari, and M. Seaid, A family of finite volume Eulerian-
Lagrangian methods for two-dimensional conservation laws, J. Comput. and App.
Math., 285 (2015), pp. 181-205.

[16] P. Benner, et al., SLICOT - A Subroutine Library in Systems and Control Theory,
Applied and Computational Control, Signals, and Circuits (Birkhauser), 1 (1999),
pp. 505-546.

[17] C.K. Birdsall and A.B. Langdon, Plasma physics via computer simulation, CRC
Press, 2004.

[18] L.S. Blackford, et al., Basic Linear Algebra Subprograms Technical (BLAST) Fo-
rum Standard, Int. J. High Perform. Comput., 16 (2002), pp. 1-2. (also available
at www.netlib.org/blas/blast-forum).

[19] R. Borges, M. Carmona, B. Costa, and W.S. Don, An improved weighted essen-
tially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys.,
227:6 (2008), pp. 3101-3211.

[20] S. Boscarino, F. Filbet, and G. Russo, High order semi-implicit schemes for time
dependent partial differential equations, J. Sci. Comput., 68 (2016), pp. 975-1001.

[21] W. Boscheri and M. Dumbser, A direct Arbitrary-Lagrangian–Eulerian ADER-
WENO finite volume scheme on unstructured tetrahedral meshes for conservative
and non-conservative hyperbolic systems in 3D, J. Comput. Phys., 275 (2014),
pp. 484-523.

[22] W. Boscheri and M. Dumbser, Arbitrary-Lagrangian-Eulerian One-Step WENO
Finite Volume Schemes on Unstructured Triangular Meshes, Comm. in Comput.
Phys., 14:5 (2013), pp. 1174-1206.

[23] W. Boscheri, R. Loubere, and M. Dumbser, Direct Arbitrary-Lagrangian–Eulerian
ADER-MOOD finite volume schemes for multidimensional hyperbolic conserva-
tion laws, J. Comput. Phys., 292 (2015), pp. 56-87.

182

[24] W. Boscheri, High Order Direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Vol-
ume Schemes for Hyperbolic Systems on Unstructured Meshes, Arch. Comput.
Meth. Eng., 24 (2017), pp. 751-801.

[25] N. Boullé and A. Townsend, A generalization of the randomized singular value de-
composition, In: International Conference on Learning Representations (2022b).

[26] C. Buet and S. Dellacherie, On the Chang and Cooper scheme applied to a linear
Fokker-Planck equation, Commun. Math. Sci., 8:4 (2010), pp. 1079-1090.

[27] C. Buet and K.C. Le-Thanh, Positive, conservative, equilibrium state preserving
and implicit difference schemes for the isotropic Fokker-Planck-Landau equation,
HAL-00142408 (2007).

[28] X. Cai, W. Guo, and J.-M. Qiu, A high order conservative semi-Lagrangian dis-
continuous Galerkin method for two-dimensional transport simulations, J. Sci.
Comput., 73 (2017) pp. 514-542.

[29] J.A. Carrillo and F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-
Based models, SIAM J. Sci. Comput., 29 (2007), pp. 1179-1206.

[30] M.A. Celia, T.F. Russell, I. Herrera, and R.E. Ewing, An Eulerian-Lagrangian
localized adjoint method for the advection-diffusion equation, Adv. Water Resour.,
13 (1990), pp. 187-206.

[31] C. Cercignani, R. Illner, and M. Pulvirenti, The mathematical theory of dilute
gases, Applied Mathematical Sciences, 106, Springer, New York, 1994.

[32] G. Ceruti, J. Kusch, and C. Lubich, A rank-adaptive robust integrator for dynam-
ical low-rank approximation, BIT Numer. Math., 62 (2022), pp. 1149-1174.

[33] G. Ceruti and C. Lubich, An unconventional robust integrator for dynamical low-
rank approximation, BIT Numer. Math., 62 (2022), pp. 23-44.

[34] G. Ceruti, C. Lubich, and H. Walach, Time integration of tree tensor networks,
SIAM J. Numer. Anal., 59:1 (2021), pp. 289-313.

[35] J. Cervi and R.J. Spiteri, High-order operator splitting for the bidomain and
monodomain models, SIAM J. Sci. Comput., 40:2 (2018), pp. A769-A786.

[36] J.S. Chang and G. Cooper, S practical difference scheme for Fokker-Planck equa-
tions, J. Comput. Phys., 6:1 (1970), pp. 1-16.

[37] S. Chapman and T.G. Cowling, The mathematical theory of non uniform gases,
3rd edn, Cambridge University Press, 1970.

[38] J. Chen, Characteristics-based high-order methods with WENO reconstructions
for linear and nonlinear dynamics, University of Delaware, (2022).

183

[39] J. Chen, X. Cai, J. Qiu, and J.-M. Qiu, Adaptive Order WENO Reconstructions
for the Semi-Lagrangian Finite Difference Scheme for Advection Problem, Comm.
in Comput. Phys., 30:1 (2021), pp. 67-96.

[40] J. Chen, J. Nakao, and J.-M. Qiu, High-order Eulerian-Lagrangian Runge-
Kutta finite volume (EL-RK-FV) methods for nonlinear hyperbolic problems with
shocks, In preparation.

[41] H. Cho, D. Venturi, and G.E. Karniadakis, Numerical methods for high-
dimensional kinetic equations, In: S. Jin, L. Pareschi (eds) Uncertainty quan-
tification for kinetic and hyperbolic equations, Springer, Berlin, 2017.

[42] A.K. Cline and I.S. Dhillon, Computation of the singular value decomposition, In:
Handbook of linear algebra, L. Hogben (ed.), Chapman and Hall/CRC, 2006.

[43] B. Cockburn, C. Johnson, C.-W. Shu, and E. Tadmor, Advanced Numerical
Approximation of Nonlinear Hyperbolic Equations, A. Quarteroni (ed.), Lecture
Notes in Math 1697, Springer, New York, 1997.

[44] S. Conde, S. Gottlieb, Z.J. Grant, and J.N. Shadid, Implicit and Implicit-Explicit
Strong Stability Preserving Runge-Kutta Methods with High Linear Order, J. Sci.
Comput., 73 (2017), pp. 667-690.

[45] J. Coughlin and J. Hu, Efficient dynamical low-rank approximation for the Vlasov-
Ampere-Fokker-Planck system, J. Comput. Phys., 470 (2022), pp. 111590.

[46] N. Crouseilles, M. Mehrenberger, and E. Sonnendrucker, Conservative semi-
Lagrangian schemes for Vlasov equations, J. Comput. Phys., 229:6 (2010), pp.
1927-1953.

[47] J. Dawson, Particle simulation of plasmas, Rev. Mod. Phys., 55:2 (1983), pp. 403.

[48] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value
decomposition, SIAM J. Matrix Anal. Appl., 21:4 (2000), pp. 1253-1278.

[49] P. Degond and B. Lucquin-Desreux, An entropy scheme for the Fokker-Planck
collision operator of plasma kinetic theory, Numer. Math., 68 (1994), pp. 239-262.

[50] P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltz-
mann collision operator in the Coulomb case, Math. Models Meth. Appl. Sci., 2:2
(1992), pp. 167-182.

[51] P. Degond, et al., Asymptotic-preserving particle-in-cell method for the Vlasov-
Poisson system near equilibrium, J. Comput. Phys., 229:16 (2010), pp. 5630-5652.

[52] A. Dektor and D. Venturi, Dynamically orthogonal tensor methods for high-
dimensional nonlinear pdes, J. Comput. Phys., 404 (2020), pp. 109125.

184

[53] L. Desvillettes, Plasma kinetic models: the Fokker-Planck-Landau equation, In:
Modeling and Computational Methods for Kinetic Equations, Model. Simul. Sci.
Eng. Technol., Birkhauser Boston, Boston, MA, 2004.

[54] L. Desvillettes and C. Villano, On the trend to global equilibrium in spatially
inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation,
Comm. Pure Appl. Math., 54:1 (2001), pp. 1-42.

[55] M.-C. Ding, X. Cai, W. Guo, and J.-M. Qiu, A semi-Lagrangian discontinuous
Galerkin (DG)-local DG method for solving convection-diffusion equations, J.
Comput. Phys., 409 (2020), pp. 109295.

[56] M.-C. Ding, J.-M. Qiu, and R. Shu, Accuracy and stability analysis of the semi-
Lagrangian method for stiff hyperbolic relaxation systems and kinetic BGK model,
Multi. Model. and Simul., 21:2 (2023), pp. 143-167.

[57] S.V. Dolgov, B.N. Khoromskij, and I.V. Oseledets, Fast solution of parabolic
problems in the tensor train/quantized tensor train format with initial application
to the Fokker-Planck equation, SIAM J. Sci. Comput., 34:6 (2012), pp. A3016-
A3038.

[58] J. Donea, A. Huerta, J.-Ph. Ponthot, and A. Rodriguez-Ferran, Arbitrary
Lagrangian-Eulerian Methods, Chapter 14 in The Encyclopedia of Computational
Mechanics, Volume 1, Wiley (2004), pp. 413-437.

[59] J. Douglas, Jr., On the numerical integration of uxx+uyy = ut by implicit methods,
SIAM, 3:1 (1955), pp. 42-65.

[60] D.A. Dunavant, High degree efficient symmetrical Gaussian quadrature rules for
the triangle, Int. J. for Num. Meth. in Engin., 21 (1985), pp. 1129-1148.

[61] G. Eckart and G. Young, The approximation of one matrix by another of lower
rank, Psychometrika, 1 (1936), pp. 211-218.

[62] V. Ehrlacher and D. Lombardi, A dynamical adaptive tensor method for the
Vlasov-Poisson system, J. Comput. Phys., 339 (2017), pp. 285-306.

[63] L. Einkemmer, J. Hu and Y. Wang, An asymptotic-preserving dynamical low-
rank method for the multi-scale multi-dimensional linear transport equation, J.
Comput. Phys., 439 (2021), pp. 110353.

[64] L. Einkemmer and I. Joseph, A mass, momentum, and energy conservative dy-
namical low-rank scheme for the Vlasov equation, J. Comput. Phys., 443 (2021),
pp. 110495.

[65] L. Einkemmer and C. Lubich, A low-rank projector-splitting integrator for the
Vlasov-Poisson equations, SIAM J. Sci. Comput., 40:5 (2018), pp. B1330-B1360.

185

[66] L. Einkemmer and C. Lubich, A quasi-conservative dynamical low-rank algorithm
for the Vlasov equation, SIAM J. Sci. Comput., 41:5 (2019), pp. B1061-1081.

[67] E.M. Epperlein, Implicit and conservative difference scheme for the Fokker-Planck
equation, J. Comput. Phys., 112 (1994), pp. 291-297.

[68] M.W. Evans, F.H. Harlow, and E. Bromberg, The particle-in-cell method for
hydrodynamics calculations, Los Alamos National Lab NM, (1957).

[69] F. Filbet and T. Rey, A rescaling velocity method for dissipative kinetic equations.
Applications to granular media, J. Comput. Phys., 248 (2013), pp. 177-199.

[70] F. Filbet and L.M. Rodrigues, Asymptotically stable particle-in-cell methods for
the Vlasov-Poisson system with a strong external magnetic field, SIAM J. Numer.
Anal., 54:2 (2016), pp. 1120-1146.

[71] F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Comp.
Phys. Comm., 150:3 (2001), pp. 247-266.

[72] F. Filbet, E. Sonnendrücker, an P. Bertrand, Conservative numerical schemes for
the Vlasov equation, J. Comput. Phys., 172:1 (2001), pp. 166-187.

[73] E. Forest and R.D. Ruth, Fourth-order symplectic integration, Phys. D Nonlinear
Phenom., 43 (1990), pp. 105-117.

[74] D. Goldman and TJ. Kaper, Nth-order operator splitting schemes and nonre-
versible systems, SIAM J. Numer. Anal., 33:1 (1996), pp. 349-367.

[75] G.H. Golub, S. Nash, and C.F. Van Loan, A Hessenberg-Schur method for the
problem AX+XB=C, IEEE Transactions on Automatic Control, 24:6 (1979), pp.
909-913.

[76] G.H. Golub and C.F. Van Loan, Matrix Computations, JHU Press, 2013.

[77] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order
time discretization methods, SIAM Review, 43:1 (2001), pp. 89-112.

[78] T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics: Influence
of grazing collisions, J. Stat. Phys., 89:3/4 (1997), pp. 751-776.

[79] L. Grasedyck, Existence and computation of low Kronecker-rank approximations
for large linear systems of tensor product structure, Computing, 72:3 (2004), pp.
247-265.

[80] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Ma-
trix Anal. Appl., 31:4 (2010), pp. 2029-2054.

186

[81] L. Grasedyck and W. Hackbusch, Construction and arithmetics of hierarchical
matrices, Computing, 70 (2003), pp. 295-334.

[82] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor
approximation techniques, GAMM-Mitteilungen, 36:1 (2013), pp. 53-78.

[83] Y.N. Grigoryev, V.A. Vshivkov, and M.P. Fedoruk, Numerical “Particle-In-Cell”
Methods, VSP: Utrech, Boston, 2002.

[84] W. Guo and J.-M. Qiu, A conservative low rank tensor method for the Vlasov
dynamics, arXiv preprint (2022), arXiv:2201.10397.

[85] W. Guo and J.-M. Qiu, A Local Macroscopic Conservative (LoMaC) low rank
tensor method for the Vlasov dynamics, arXiv preprint (2022), arXiv:2207.00518.

[86] W. Guo and J.-M. Qiu, A low rank tensor representation of linear transport and
nonlinear Vlasov solutions and their associated flow maps, J. Comput. Phys., 458
(2022), pp. 111089.

[87] D.A. Gurnett and A. Bhattacharjee, Introduction to plasma physics: with space,
laboratory and astrophysical applications, 2nd edn, Cambridge Univ. Press, 2017.

[88] W. Hackbusch, Tensor schemes and numerical tensor calculus, Springer Berlin,
Vol. 42, 2012.

[89] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J.
Fourier Anal. Appl., 15:5 (2009), pp. 706-722.

[90] N. Halko, P.G. Martinsson, and J.A. Tropp, Finding structure with random-
ness: probabilistic algorithms for constructing approximate matrix decomposi-
tions, SIAM Review, 53:2 (2011), pp. 217-288.

[91] R.D. Hazeltine and J.D. Meiss, Plasma confinement, Addison-Wesly Publishing
Company, Redwood City, CA, USA, 1991.

[92] I. Higueras, N. Happenhofer, O. Koch, and F. Kupka, Optimized strong stability
preserving IMEX Runge-Kutta methods, J. Comput. and Appl. Math., 272 (2014),
pp. 116-140.

[93] S.P. Hirschman and D.J. Sigmar, Approximate Fokker-Planck collision operator
for transport theory applications, The Physics of Fluids, 19:10 (1976), pp. 1532-
1540.

[94] C. Hirt, A. Amsden, and J. Cook, An arbitrary lagrangian eulerian computing
method for all flow speeds, J. Comput. Phys., 14 (1974), pp. 227253.

[95] R.W. Hockney and J.W. Eastwood, Computer Simulation Using Particles, Taylor
& Francis Inc., USA, January 1988.

187

[96] J. Hu, R. Shu, and X. Zhang, Asymptotic-preserving and positivity-preserving
implicit-explicit schemes for the stiff BGK equation, SIAM J. Numer. Anal., 56:2
(2018), pp. 942-973.

[97] J. Hu and X. Zhang, Positivity-preserving and energy-dissipative finite difference
schemes for the Fokker-Planck and Keller-Segel equations, arXiv preprint (2021),
arXiv:2103.16790.

[98] C.-S. Huang, T. Arbogast, and J. Qiu, An Eulerian-Lagrangian WENO finite
volume scheme for advection problems, J. Comput. Phys., 231 (2012), pp. 4028-
4052.

[99] C.-S. Huang and T. Arbogast, An Eulerian-Lagrangian Weighted Essentially
Nonoscillatory scheme for Nonlinear Conservation Laws, Num. Meth. for Part.
Diff. Eq., 33:3 (2017), pp. 651-680.

[100] F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrucker, and O. Couland, Instabil-
ity of the time splitting scheme for the one-dimensional and relativistic Vlasov-
Maxwell system, J. Comput. Phys., 185:2 (2003), pp. 512-531.

[101] E. Isaacson and H.B. Keller, Analysis of Numerical Methods, Wiley, New York,
1966.

[102] D. Jarema, et al., Block-structured grids for Eulerian gyrokinetic simulations,
Comp. Phys. Comm., 198 (2016), pp. 105-117.

[103] S. Jin and L. Wang, An asymptotic preserving scheme for the Vlasov-Poisson-
Fokker-Planck system in the high field regime, Acta Math. Sci., 31B:6 (2011), pp.
2219-2232.

[104] S. Jin and B. Yan, A class of asymptotic-preserving schemes for the Fokker-
Planck-Landau equation, J. Comput. Phys., 230 (2011), pp. 6420-6437.

[105] E. Kieri, C. Lubich, and H. Walach, Discretized dynamical low-rank approxima-
tion in the presence of small singular values, SIAM J. Numer. Anal., 54:2 (2016),
pp. 1020-1038.

[106] H.A.L. Kiers, Towards a standardized notation and terminology in multiway
analysis, J. Chemometrics, 14 (2000), pp. 105-122.

[107] O. Koch and C. Lubich, Dynamical low-rank approximation, SIAM J. Matrix
Anal. Appl., 29:2 (2007), pp. 434-454.

[108] O. Koch and C. Lubich, Dynamical tensor approximation, SIAM J. Matrix Anal.
Appl., 31:5 (2010), pp. 2360-2375.

[109] T.G. Kolda and B.W. Bader, Tensor Decompositions and Applications, SIAM
Review, 51:3 (2009), pp. 455-500.

188

[110] J. Koo, R. Martin, and E.M. Sousa, High fidelity modeling of field reserved
configuration (FRC) thrusters, AFRL/RQRS, (2017).

[111] K. Kormann, A semi-Lagrangian Vlasov solver in tensor train format, SIAM J.
Sci. Comput., 37:4 (2015), pp. B613-B632.

[112] K. Kormann, Low-rank tensor discretization for high-dimensional problems, Vor-
lesung (2017).

[113] D. Kressner and C. Tobler, Krylov subspace methods for linear systems with
tensor product structure, SIAM J. Matrix Anal. Appl., 31:4 (2010), pp. 1688-
1714.

[114] P.K. Kundu, I.M. Cohen, and D.R. Dowling, Fluid mechanics, 6th edn, Academic
Press, 2015.

[115] O. Larroche, Kinetic simulations of fuel ion transport in ICF target implosions,
Eur. Phys. J. D, 27 (2003), pp. 131-146.

[116] E.W. Larsen, C.D. Levermore, G. Pomraning, and J.G. Sanderson, Discretiza-
tion methods for one-dimensional Fokker-Planck operators, J. Comput. Phys., 61
(1985), pp. 359-390.

[117] R.J. Leveque, High-resolution conservative algorithms for advection in incom-
pressible flow, SIAM J. Numer. Anal., 33:2 (1996), pp. 627–665.

[118] R.J. Leveque, Numerical methods for conservation laws, Basel: Birkhäuser, Vol.
214, 1992.

[119] R.J. Leveque, Finite difference methods for ordinary and partial differential equa-
tions: steady-state and time-dependent problems, SIAM, 2007.

[120] D. Levy, G. Puppo, and G. Russo, Central WENO schemes for hyperbolic systems
of conservation laws, ESAIM: Math. Model. and Numer. Anal., 33:3 (1999), pp.
547-571.

[121] L. Li, J. Qiu, and G. Russo, A High-Order Semi-Lagrangian Finite Difference
Method for Nonlinear Vlasov and BGK Models. Comm. on Applied Math. and
Comput., (2022), pp. 1-29.

[122] R. Li, T. Tang, and P.W. Zhang, Moving mesh methods in multiple dimensions
based on harmonic maps, J. Comput. Phys., 170 (2001), pp. 562-588.

[123] S. Li and L. Petzold, Moving mesh methods with upwinding schemes for time-
dependent PDEs, J. Comput. Phys., 131 (1997), pp. 368-377.

189

[124] C. Lubich, Time integration in the multiconfiguration time-dependent Hartree
method of molecular quantum dynamics, Appl. Math. Res. Express., AMRX
2015:2 (2015), pp. 311-328.

[125] C. Lubich and I.V. Oseledets, A projector-splitting integrator for dynamical low-
rank approximation, BIT Numer. Math., 54 (2014), pp. 171-188.

[126] C. Lubich, I.V. Oseledets, and B. Vandereycken, Time integration of tensor
trains, SIAM J. Numer. Anal., 53:2 (2015), pp. 917-941.

[127] C. Lubich, B. Vandereycken, and H. Walach, Time integration of rank-
constrained Tucker tensors, SIAM J. Numer. Anal., 56:3 (2018), pp. 1273-1290.

[128] C. Lubich, et al., Dynamical approximation by hierarchical Tucker and tensor-
train tensors, SIAM J. Matrix Anal. Appl., 34:2 (2013), pp. 470-494.

[129] D. Luo, W. Huang, and J. Qiu, A quasi-Lagrangian moving mesh discontinuous
Galerkin method for hyperbolic conservation laws, J. Comput. Phys., 396 (2019),
pp. 544-578.

[130] M.E. Mincsovics and T. Kalmar-Nagy, Splitting headache: How well do splitting
methods preserve stability?, Int. J. of Non. Mech., 149 (2023), pp. 104309.

[131] M. Mohammadi and A. Borzi, Analysis of the Chang-Cooper discretization
scheme for a class of Fokker-Planck equations, J. Numer. Math., 23:3 (2015),
pp. 271-288.

[132] D.C. Montgomery and D.A. Tidman, Plasma Kinetic Theory, McGraw Hill, 1964.

[133] J. Nakao, J. Chen, and J.-M. Qiu, An Eulerian-Lagragian Runge-Kutta finite
volume (EL-RK-FV) method for solving convection and convection-diffusion equa-
tions, J. Comput. Phys., 470 (2022), pp. 111589.

[134] J. Nieto, F. Poupaud, and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-
Planck system, Archive for Rational Mechanics and Analysis, 158 (2001), pp.
29-59.

[135] I.V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33:5 (2011),
pp. 2295-2317.

[136] I.V. Oseledets and S.V. Dolgov, Solution of linear systems and matrix inversion
in the TT-format, SIAM J. Sci. Comput., 34:5 (2012), pp. A2718-A2739.

[137] E.E. Papalexakis, et al., Large scale tensor decompositions: algorithmic develop-
ments and applications’, IEEE Data Eng. Bull., 36:3 (2013), pp. 59-66.

190

[138] L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applica-
tions to hyperbolic systems with relaxation, J. Sci. Comput., 25 (2005), pp. 129-
155.

[139] L. Pareschi and M. Zanella, Structure preserving schemes for nonlinear Fokker-
Planck equations and applications, J. Sci. Comput., 74:3 (2018), pp. 1575-1600.

[140] D.W. Peaceman and H.H. Rachford, Jr., The numerical solution of parabolic and
elliptic differential equations, SIAM, 3:1 (1955), pp. 28-41.

[141] J.S. Peery and D.E. Carroll, Multi-material ale methods in unstructured grids,
Comp. Meth. in App. Mech. and Eng., 187 (2000), pp. 591-619.

[142] J.-M. Qiu and A. Christlieb, A conservative high order semi-Lagrangian WENO
method for the Vlasov equation, J. Comput. Phys., 229:4 (2010), pp. 1130-1149.

[143] J.-M. Qiu and C.-W. Shu, Conservative high order semi-Lagrangian finite differ-
ence WENO methods for advection in incompressible flow, J. Comput. Phys., 230
(2011), pp. 863-889.

[144] J.-M. Qiu and C.-W. Shu, Positivity preserving semi-Lagrangian discontinuous
Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson
system, J. Comput. Phys., 230 (2011), pp. 8386-8409.

[145] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics, Springer Science
and Business Media, Vol. 37, 2010.

[146] S. Rabanser, O. Shchur, and S. Günnemann, Introduction to tensor decom-
positions and their applications in machine learning, arXiv preprint (2018),
arXiv:1711.10781.

[147] A. Ralston and P. Rabinowitz, A first course in numerical analysis, McGraw-Hill,
2nd edition, New York, 1978.

[148] C.P. Ridgers, R.J. Kingham, and A.G.R. Thomas, Magnetic cavitation and the
reemergence of nonlocal transport in laser plasmas, Phys. Rev. Lett., 100 (2008),
pp. 075003.

[149] A. Rodgers, A. Dektor, and D. Venturi, Adaptive integration of nonlinear evolu-
tion equations on tensor manifolds, J. Sci. Comput., 92:2 (2022), pp. 39.

[150] A. Rodgers and D. Venturi, Implicit step-truncation integration of nonlinear
PDEs on low-rank tensor manifolds, arXiv preprint (2022), arXiv:2207.01962.

[151] J.A. Rossmanith and D.C. Seal, A positivity-preserving high-order semi-
Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations, J.
Comput. Phys., 230 (2011), pp. 6203-6232.

191

[152] T.F. Russell and M.A. Celia, An overview of research on Eulerian-Lagrangian
localized adjoint methods (ELLAM), Adv. Water Resour. 25 (2002), pp. 1215-
1231.

[153] M. Seydaoglu, U. Erdogan, and T. Ozis, Numerical solution of Burgers’ equation
with high order splitting methods, J. Comput. and Appl. Math., 291 (2016), pp.
410-421.

[154] T. Shi and A. Townsend, On the compressibility of tensors, SIAM J. Matrix
Anal. Appl., 42:1 (2021), pp. 275-298.

[155] T. Shiroto and Y. Sentoku, Structure-preserving strategy for conservative simu-
lation of the relativistic nonlinear Landau-Fokker-Planck equation, Phys. Rev. E,
99:5 (2019), pp. 053309.

[156] E. Sonnendrücker, et al., The semi-Lagrangian method for the numerical resolu-
tion of the Vlasov equation, J. Comput. Phys., 149:2 (1999), pp. 201-222.

[157] C.-W. Shu, High Order Weighted Essentially Nonoscillatory Schemes for Con-
vection Dominated Problems, SIAM Review, 51:1 (2009), pp. 82-126.

[158] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci.
Statist. Comput., 9:6 (1988), pp. 1073-1084.

[159] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory
shock-capturing schemes, J. Comput. Phys., 77:2 (1988), pp. 439-471.

[160] F. Stenger, Numerical methods based on Sinc and analytic functions, Springer,
New York, 1993.

[161] J.M. Stockie, J.A. Mackenzie, and R.D. Russell, A moving mesh method for one-
dimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 22 (2001), pp.
1791-1813.

[162] W.T. Taitano, et al., A conservative phase-space moving-grid strategy for a 1D-
2V Vlasov-Fokker-Planck solver, Comp. Phys. Comm., 258 (2021), pp. 107547.

[163] W.T. Taitano, et al., A mass, momentum, and energy conserving, fully implicit,
scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-
Planck equation, J. Comput. Phys., 297 (2015), pp. 357-380.

[164] W.T. Taitano, et al., An Eulerian Vlasov-Fokker-Planck algorithm for spheri-
cal implosion simulations of intertial confinement fusion capsules, Comp. Phys.
Comm., 263 (2021), pp. 107861.

[165] W.T. Taitano and L. Chacon, Charge-and-energy conserving moment-based ac-
celerator for a multi-species Vlasov-Fokker-Planck-Ampere system, part I: colli-
sionless aspects, J. Comput. Phys., 284 (2015), pp. 718-726.

192

[166] W.T. Taitano, L. Chacon, and A.N. Simakov, An equilibrium-preserving dis-
cretization for the nonlinear Rosenbluth-Fokker-Planck operator in arbitrary
multi-dimensional geometry, J. Comput. Phys., 339 (2017), pp. 458-460.

[167] W.T. Taitano, D.A. Knoll, and L. Chacon, Charge-and-energy conserving
moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampere sys-
tem, part II: collisional aspects, J. Comput. Phys., 284 (2015), pp. 737-757.

[168] H. Tang and T. Tang, Adaptive mesh methods for one- and two-dimensional
hyperbolic conservation laws, SIAM J. Numer. Anal., 41:2 (2003), pp. 487-515.

[169] A.G.R. Thomas, et al., A review of Vlasov-Fokker-Planck numerical modeling
of inertial confinement fusion plasma, J. Comput. Phys., 231:3 (2012), pp. 1051-
1079.

[170] G. Toscani, Entropy production and the rate of convergence to equilibrium for
the Fokker-Planck equation, Quar. Appl. Math., 57:3 (1999), pp. 521-541.

[171] L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Re-
view, 50:1 (2008), pp. 67-87.

[172] L.N. Trefethen and D. Bau, Numerical linear algebra, SIAM, Philadelphia, PA,
1997.

[173] D. Tskhakaya, K. Matyash, R. Schneider, and F. Taccogna, The Particle-In-Cell
Method, Contributions to Plasma Physics, 47:8-9 (2007), pp. 563-594.

[174] L.R. Tucker, Some mathematical notes on three-mode factor analysis, Psychome-
trika, 31:3 (1966), pp. 279-311.

[175] M. Udell and A. Townsend, Why are big data matrices approximately low rank?,
SIAM J. Math. Data Sci., 1:1 (2019), pp. 144-160.

[176] S. Van Huffel, et al., Development of high performance numerical software for
control, IEEE Control systems Magazine, 24:1 (2004), pp. 60-76.

[177] H. Wang, S. Wang, Q. Zhang, and C.-W. Shu, Local discontinuous Galerkin
methods with implicit-explicit time-marching for multi-dimensional convection-
diffusion problems, ESAIM: Math. Model. and Numer. Anal., 50:4 (2016), pp.
1083-1105.

[178] T. Xiong, G. Russo, and J.-M. Qiu, Conservative Multi-dimensional Semi-
Lagrangian Finite Difference Scheme: Stability and Applications to the Kinetic
and Fluid Simulations, J. Sci. Comp., 79 (2019), pp. 1241-1270.

[179] D. Xiu and G.E. Karniadakis, A semi-Lagrangian high-order method for Navier-
Stokes equations, J. Comput. Phys., 172 (2001), pp. 658-684.

193

[180] Y. Yang, J. Chen, and J.-M. Qiu, Stability analysis of the Eulerian-Lagrangian
finite volume methods for nonlinear hyperbolic equations in one space dimension,
arXiv preprint (2023), arXiv:2302.07291.

[181] E.S. Yoon and C.S. Chang, A Fokker-Planck-Landau collision equation solver
on two-dimensional velocity grid and its application to particle-in-cell simulation,
Phys. Plasmas, 21 (2014), pp. 032503.

[182] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A,
150 (1990), pp. 262-268.

[183] M. Zennaro, Natural continuous extensions of Runge-Kutta methods, Math
Comp., 46 (1986), pp. 119-133.

[184] J. Zhu and J. Qiu, A new third order finite volume weighted essentially non-
oscillatory scheme on tetrahedral meshes, J. Comput. Phys., 349 (2017), pp. 220-
232.

[185] J. Zhu and J. Qiu, A New Type of Finite Volume WENO Schemes for Hyperbolic
Conservation Laws, J. Sci. Comput., 73 (2017), pp. 1338-1359.

[186] J. Zhu and C.-W. Shu, A new type of multi-resolution WENO schemes with
increasingly higher order of accuracy on triangular meshes, J. Comput. Phys.,
392 (2019), pp. 19-33.

[187] J. Zhu and J. Qiu, A new fifth order finite difference WENO scheme for solving
hyperbolic conservation laws, J. Comput. Phys., 318 (2016), pp. 110-121.

[188] J. Zhu and J. Qiu, New finite volume weighted essentially nonoscillatory schemes
on triangular meshes, SIAM J. Sci. Comput., 40:2 (2018), pp. A903-A928.

194

Appendix A

AN ILLUSTRATIVE EXAMPLE WITH IMEX(2,2,2)

In this section, we couple the EL-RK-FV algorithm with IMEX(2,2,2), that

is, two-stage implicit, two-stage explicit, and of combined order two. This scheme is

L-stable and uses a second order DIRK method. Figure A.1 shows the lone sub-space-

time region 1Ωj.

Figure A.1: The space-time region 1Ωj for IMEX(2,2,2).

Step 0a. Compute the approximate characteristic speeds using equation (2.2.2). After

defining the space-time region Ωj, compute the possibly nonuniform traceback cell

averages ũj(t
n) using Algorithm 2.1.

Step 0b. Use the possibly nonuniform traceback cell averages ũj(t
n) in Algorithm 2.2

to compute K̂1 = F(Un; tn)).

Step 1a. Using the same approximate characteristic speeds from step 1a, define the

sub-space-time region 1Ωj as seen in Figure A.1. Compute the possibly nonuniform

traceback cell averages 1ũ
n
j using Algorithm 2.1.

Step 1b. Use the possibly nonuniform traceback cell averages 1ũ
n
j in Algorithm 2.2 to

compute 1K̂1 = F(1Un; tn)).

195

Step 1c. Recalling equation (2.3.4), solve equation (2.3.10) by solving the linear

system (
I− γϵ∆t

∆x2
D4

)
1

#»

U (1) = 1
#»

U n + γ∆t1
#»

K̂1 + γ∆t #»g (x, t(1)), (A.0.1)

where #»g j(x, t
(1)) =

∫
Ij
g(x, t(1))dx can be computed with a Gaussian quadrature.

Step 1d. Compute the uniform cell averages u
(1)
j = 1U

(1)
j /∆x.

Step 1e. Compute the uniform cell averages u
(1)
xx,j using equation (2.3.4),

#»
u (1)

xx =
1

∆x2
D4

#»
u (1). (A.0.2)

Step 1f. Compute the possibly nonuniform traceback cell averages ũ
(1)
j and ũ

(1)
xx,j (we

are now in the space-time region Ωj) using Algorithm 2.1.

Step 1g. Compute K1 = G(U (1); t(1)),

K1 = ϵ∆x̃
(1)
j ũ

(1)
xx,j +

∫
Ĩj(t(1))

g(x, t(1))dx, (A.0.3)

where the definite integral involving g(x, t) can be evaluated using a Gaussian quadra-

ture.

Step 1h. Use the possibly nonuniform traceback cell averages ũ
(1)
j in Algorithm 2.2

to compute K̂2 = F(U (1); t(1)).

Step 2. Recalling equation (2.3.4), solve equation (2.3.7a) by solving the linear system

(
I− γϵ∆t

∆x2
D4

)
#»

U n+1 =
#»

U n + (1− γ)∆t
#»

K̂1 +∆t(δ
#»

K̂1 + (1− δ)
#»

K̂2) + γ∆t #»g (x, tn+1),

(A.0.4)

where #»g j(x, t
n+1) =

∫
Ij
g(x, tn+1)dx can be computed with a Gaussian quadrature.

196

Appendix B

THE SECOND-ORDER SCHEME WITH CRANK-NICOLSON

We treat Crank-Nicolson as a two stage integrator similar to the stiffly-accurate

DIRK2. The first stage is simply the first-order backward Euler approximation. The

second stage is the second-order Crank-Nicolson approximation. In this way, the pro-

posed second-order scheme using Crank-Nicolson is nearly identical to the second-order

scheme using stiffly-accurate DIRK2 in Algorithm 3.2. As such, we omit the finer de-

tails and outline the main equations.

The first-order backward Euler method and second-order Crank-Nicolson method

are respectively

U (1) = Un +∆tL(U (1); t(1)), (B.0.1a)

Un+1 = Un +
∆t

2
L(Un; tn) +

∆t

2
L(Un+1; tn+1), (B.0.1b)

where L(U ; t) = (d21∂
2
x + d22∂

2
y)U and t(1) = tn+1.

K − L− S phase 1

The first stage is the backward Euler integrator over a full time-step. Following

Algorithm 3.1, we obtain the low-rank solution U(1) = Vx,(1)S(1)(Vy,(1))T of rank r(1).

K − L− S phase 2: K and L steps

Discretizing equation (3.2.2) using Crank-Nicolson,

Vx,n+1Sn+1(Vy,n+1)T−∆t

2
DxVx,n+1Sn+1(Vy,n+1)T

− ∆t

2
Vx,n+1Sn+1(DyVy,n+1)T = RHS,

(B.0.2a)

197

RHS = Vx,nSn(Vy,n)T +
∆t

2
DxVx,nSn(Vy,n)T +

∆t

2
Vx,nSn(DyVy,n)T . (B.0.2b)

The approximate bases 3.2.5 used in the first-order scheme will not suffice since

the O(∆t) error will destroy the desired second-order accuracy. Consider the aug-

mented bases

[
Vx,n | Vx,(1)

]
∈ RNx×(rn+r(1)),

[
Vy,n | Vy,(1)

]
∈ RNy×(rn+r(1)).

Computing the reduced SVDs of the augmented bases, letUx be the left singular

vectors of
[
Vx,n|Vx,(1)

]
, and Uy be the left singular vectors of

[
Vy,n|Vy,(1)

]
. Further

let rx and ry be the respectively number of singular values greater than the same

tolerance ϵ. The approximate bases for the second stage of the second-order scheme

are defined by

Vx,⋆ := Ux(:, 1 : r), (B.0.3a)

Vy,⋆ := Uy(:, 1 : r), (B.0.3b)

where r = max(rx, ry). After substitutingVy,n+1 withVy,⋆, projecting equation (B.0.2)

onto the column space of Vy,⋆ yields the Sylvester equation

(
I− ∆t

2
Dx

)
Kn+1 +Kn+1

(
−∆t

2
(DyVy,⋆)TVy,⋆

)
= (RHS)Vy,⋆, (B.0.4)

where Kn = Vx,nSn. Similarly, substituting Vx,n+1 with Vx,⋆ and projecting equation

(B.0.2) onto the column space of Vx,⋆ yields the Sylvester equation

(
I− ∆t

2
Dy

)
Ln+1 + Ln+1

(
−∆t

2
(DxVx,⋆)TVx,⋆

)
= (RHS)TVx,⋆, (B.0.5)

where Ln =
(
Sn(Vy,n)T

)T
= Vy,n(Sn)T .

Computing the reduced QR factorizations Kn+1 = QxRx and Ln+1 = QyRy,

198

the updated bases are defined by

Vx,n+1 := Qx, Vy,n+1 := Qy.

Remark B.1. If the diagonalized variant of the second-order scheme is desired, then

the matrices I − ∆t
2
Dx and I − ∆t

2
Dy will need to be diagonalized. Instead of solving

equation (B.0.6), the second stage of the second-order scheme will solve

ZxK̃n+1 + K̃n+1

(
−∆t

2
(DyVy,⋆

1)TVy,⋆
1

)
= (Wx)T

(
(RHS)Vy,⋆

)
. (B.0.6)

The diagonalized variant of equation (B.0.5) follows similarly.

K − L− S phase 2: S step

Projecting equation (B.0.2) in both dimensions onto the column spaces of the

updated bases Vx,n+1 and Vy,n+1,

Sn+1 − ∆t

2
(Vx,n+1)TDxVx,n+1Sn+1

− ∆t

2
Sn+1(DyVy,n+1)TVy,n+1 = (Vx,n+1)T (RHS)Vy,n+1.

(B.0.7)

Compute the eigenvalue decompositions of the real symmetric matrices

−∆t

2
(Vx,n+1)TDxVx,n+1 = QxΛx(Qx)T , −∆t

2
(DyVy,n+1)TVy,n+1 = QyΛy(Qy)T .

Letting

S̃n+1 = (Qx)TSn+1Qy, (B.0.8a)

B̃ = (Vx,n+1Qx)T (RHS)Vy,n+1Qy, (B.0.8b)

equation (B.0.7) becomes the Sylvester equation

(I+Λx)S̃n+1 + S̃n+1Λy = B̃. (B.0.9)

199

Solving equation (B.0.9) has a relatively small computational complexity. The updated

Sn+1 is obtained by

Sn+1 = QxS̃n+1(Qy)T .

Compressing the updated solution Vx,n+1Sn+1(Vy,n+1)T is done just like in the

first-order scheme. Let UΣVT be the SVD of Sn+1 and rn+1 be the number of singular

values larger than some small tolerance ϵ > 0. Redefine the bases to be

Vx,n+1 := Vx,n+1U:,1:rn+1 , Sn+1 := Σ1:rn+1,1:rn+1 , Vy,n+1 := Vy,n+1V:,1:rn+1 .

(B.0.10)

We opt not to outline the second-order algorithm via Crank-Nicolson since it

follows near identically to Algorithm 3.2.

200

Appendix C

THE SECOND-ORDER SCHEME WITH BDF2

The second-order scheme using BDF2 follows similarly to the second-order

scheme using Crank-Nicolson in Appendix B. However, BDF2 is a linear multistep

method in which the solution at tn+1 is dependent on the solution at tn and tn−1. We

use the second-order Crank-Nicolson method to initialize the solution at t1. The sub-

sequent steps can then update the solution from tn to tn+1. Just like the second-order

scheme using Crank-Nicolson, the first K − L − S phase will be the backward Euler

approximation; and then the second K−L−S phase will be the BDF2 approximation.

Figure C.1 provides a visual of this scheme.

Figure C.1: The second-order scheme with BDF2.

K − L− S phase 1

The first stage is the backward Euler integrator over a full time-step. Following

Algorithm 3.1, we obtain the low-rank solution U(1) = Vx,(1)S(1)(Vy,(1))T of rank r(1).

K − L− S phase 2: K and L steps

Discretizing equation (3.2.2) using BDF2,

Vx,n+1Sn+1(Vy,n+1)T−2∆t

3
DxVx,n+1Sn+1(Vy,n+1)T

− 2∆t

3
Vx,n+1Sn+1(DyVy,n+1)T = RHS,

(C.0.1a)

201

RHS =
4

3
Vx,nSn(Vy,n)T − 1

3
Vx,n−1Sn−1(Vy,n−1)T . (C.0.1b)

The approximate bases 3.2.5 used in the first-order scheme will not suffice since

the O(∆t) error will destroy the desired second-order accuracy. Consider the aug-

mented bases [
Vx,n−1 | Vx,n | Vx,(1)

]
∈ RNx×(rn−1+rn+r(1)),

[
Vy,n−1 | Vy,n | Vy,(1)

]
∈ RNy×(rn−1+rn+r(1)).

Computing the reduced SVDs of the augmented bases, letUx be the left singular

vectors of
[
Vx,n−1|Vx,n|Vx,(1)

]
, andUy be the left singular vectors of

[
Vy,n−1|Vy,n|Vy,(1)

]
.

Further let rx and ry be the respectively number of singular values greater than the

same tolerance ϵ. The approximate bases for the second stage of the second-order

scheme are defined by

Vx,⋆ := Ux(:, 1 : r), (C.0.2a)

Vy,⋆ := Uy(:, 1 : r), (C.0.2b)

where r = max(rx, ry). After substitutingVy,n+1 withVy,⋆, projecting equation (C.0.1)

onto the column space of Vy,⋆ yields the Sylvester equation

(
I− 2∆t

3
Dx

)
Kn+1 +Kn+1

(
−2∆t

3
(DyVy,⋆)TVy,⋆

)
= (RHS)Vy,⋆, (C.0.3)

where Kn = Vx,nSn. Similarly, substituting Vx,n+1 with Vx,⋆ and projecting equation

(C.0.1) onto the column space of Vx,⋆ yields the Sylvester equation

(
I− 2∆t

3
Dy

)
Ln+1 + Ln+1

(
−2∆t

3
(DxVx,⋆)TVx,⋆

)
= (RHS)TVx,⋆, (C.0.4)

where Ln =
(
Sn(Vy,n)T

)T
= Vy,n(Sn)T .

Computing the reduced QR factorizations Kn+1 = QxRx and Ln+1 = QyRy,

202

the updated bases are defined by

Vx,n+1 := Qx, Vy,n+1 := Qy.

Remark C.1. If the diagonalized variant of the second-order scheme is desired, then

the matrices I− 2∆t
3
Dx and I− 2∆t

3
Dy will need to be diagonalized. Instead of solving

equation (C.0.5), the second stage of the second-order scheme will solve

ZxK̃n+1 + K̃n+1

(
−2∆t

3
(DyVy,⋆

1)TVy,⋆
1

)
= (Wx)T

(
(RHS)Vy,⋆

)
. (C.0.5)

The diagonalized variant of equation (C.0.4) follows similarly.

K − L− S phase 2: S step

Projecting equation (C.0.1) in both dimensions onto the column spaces of the

updated bases Vx,n+1 and Vy,n+1,

Sn+1 − 2∆t

3
(Vx,n+1)TDxVx,n+1Sn+1

− 2∆t

3
Sn+1(DyVy,n+1)TVy,n+1 = (Vx,n+1)T (RHS)Vy,n+1.

(C.0.6)

Compute the eigenvalue decompositions of the real symmetric matrices

−2∆t

3
(Vx,n+1)TDxVx,n+1 = QxΛx(Qx)T , −2∆t

3
(DyVy,n+1)TVy,n+1 = QyΛy(Qy)T .

Letting

S̃n+1 = (Qx)TSn+1Qy, (C.0.7a)

B̃ = (Vx,n+1Qx)T (RHS)Vy,n+1Qy, (C.0.7b)

equation (C.0.6) becomes the Sylvester equation

(I+Λx)S̃n+1 + S̃n+1Λy = B̃. (C.0.8)

203

Solving equation (C.0.8) has a relatively small computational complexity. The updated

Sn+1 is obtained by

Sn+1 = QxS̃n+1(Qy)T .

Compressing the updated solution Vx,n+1Sn+1(Vy,n+1)T is done just like in the

first-order scheme. Let UΣVT be the SVD of Sn+1 and rn+1 be the number of singular

values larger than some small tolerance ϵ > 0. Redefine the bases to be

Vx,n+1 := Vx,n+1U:,1:rn+1 , Sn+1 := Σ1:rn+1,1:rn+1 , Vy,n+1 := Vy,n+1V:,1:rn+1 .

(C.0.9)

We opt not to outline the second-order algorithm via BDF2 since it follows near

identically to Algorithm 3.2.

Remark C.2. It is common practice to define the time-step ∆t in terms of the spatial

mesh, e.g., ∆t = (CFL)∆x for some CFL > 0. Since the desired final time t = Tf

might not be an integer multiple of ∆t, the final time-step is usually smaller than

the other time-steps, ∆tNt < ∆t. As such, BDF2 applied to the final time-step will

not output the solution at time t = Tf since BDF2 is a linear multistep method that

assumes ∆tn+1 = ∆tn. To remedy this issue, we apply the “one step of Crank-Nicolson,

and then one step of BDF2” strategy over the final time-step [tNt−1, tNt] that we use

in the initialization; see Figure C.1. By taking a half time-step (tNt − tNt−1)/2 with

Crank-Nicolson, and then a half time-step (tNt−tNt−1)/2 with BDF2, the final solution

will be at time t = Tf . Another common strategy with linear multistep methods is to

interpolate the solution at the final time, but we opted not to do this since the chosen

approach is already implemented in the initialization.

204

Appendix D

NONDIMENSIONALIZING THE 1D2V
VLASOV-LEONARD-BERNSTEIN-FOKKER-PLANCK EQUATION IN

CYLINDRICAL COORDINATES

We first present the dimensional kinetic-ion and fluid-electron model used in

Chapter 4. The dimensional kinetic ion Vlasov-Leonard-Bernstein-Fokker-Planck (VLBFP)

equation in cylindrical coordinates is [162]

∂fα
∂t

+ v||
∂fα
∂x

+
qα
mα

E||
∂fα
∂v||

= Cαα + Cαe, (D.0.1a)

Cαα = ναα∇v ·
(
Tα
mα

∇vfα + (v − uα)fα

)
, (D.0.1b)

Cαe = ναe∇v ·
(
Te
mα

∇vfα + (v − ue)fα

)
, (D.0.1c)

where fα is the distribution function for the single ion species α, and the charge, mass,

temperature, bulk velocity, and collision frequencies for the ion species and electron

are respectively denoted by q, m, T , u, and ν. The fluid-electron energy equation is

[162]
3

2

∂pe
∂t

+
5

2

∂

∂x

(
ue,||pe

)
− ue,||

∂pe
∂x
− ∂

∂x

(
κe,||

∂Te
∂x

)
= Weα, (D.0.2a)

Weα = −

〈
mα|v|2

2
, Cαe

〉
= 3ναenα(Tα − Te), (D.0.2b)

where pe = neTe is the electron pressure, κe,|| is the thermal conductivity, and the

velocity space L2 inner product is denoted

⟨F (v), G(v)⟩ .= 2π

∫ ∞

−∞

∫ ∞

0

F (v)G(v)v⊥dv⊥dv||. (D.0.3)

205

Refer to Section 4.2 for how to get the simplified form of the second-order moment of

the Leonard-Bernstein-Fokker-Planck operator. The collision frequencies and thermal

conductivity are given by

ναα =
ζ
√
mα

nα

T
3/2
α

, (D.0.4a)

ναe√
2
=

ζ
√
mα

√
me

mα

ne

T
3/2
e

, (D.0.4b)

κe,|| =
1√
2

3.2

ζ

nα

ne

T
5/2
e√
me

, (D.0.4c)

for some constant ζ [87, 91, 162]. To ensure discrete conservation of the zeroth, first,

and second order moments, we assume quasi-neutrality n = nα = ne, ambipolarity

u = uα = ue, and that the electric field is determined from Ohm’s law E|| =
1

qene

∂pe
∂x

.

We further assume drift only occurs in the parallel direction, that is, u⊥ = 0.

The reference quantities are chosen for unity (i.e., m∗ = mα and q∗ = qα) and

listed in Table D.1. Using the reference quantities in Table D.1, the nondimensional

Vlasov-Leonard-Bernstein-Fokker-Planck equation is

∂f̃α

∂t̃
+ ṽ||

∂f̃α
∂x̃

+
q̃α
m̃α

Ẽ||
∂f̃α
∂ṽ||

= C̃αα + C̃αe, (D.0.5a)

C̃αα = ν̃αα∇̃ṽ ·

(
T̃α
m̃α

∇̃ṽf̃α + (ṽ − ũα)f̃α

)
, (D.0.5b)

C̃αe = ν̃αe∇̃ṽ ·

(
T̃e
m̃α

∇̃ṽf̃α + (ṽ − ũe)f̃α

)
, (D.0.5c)

and the nondimensional fluid-electron energy model is

3

2

∂p̃e

∂t̃
+

5

2

∂

∂x̃

(
ũe,||p̃e

)
− ũe,||

∂p̃e
∂x̃
− ∂

∂x̃

(
κ̃e,||

∂T̃e
∂x̃

)
= 3ν̃αeñα(T̃α − T̃e). (D.0.6)

The nondimensional collision frequencies and thermal conductivity under quasi-neutrality

206

are

ν̃αα =
ñα

T̃
3/2
α

(D.0.7a)

ν̃αe√
2
=

√
m̃eñe

T̃
3/2
e

(D.0.7b)

κ̃e,|| =
3.2√
2

T̃
5/2
e√
m̃e

(D.0.7c)

Number density n∗ = nα

Temperature T ∗ = Tα
Mass m∗ = mα

Charge q∗ = qα

Drift velocity u∗ =

√
T ∗

m∗

Time τ ∗ = (ν∗)−1 =

√
m∗(T ∗)3/2

ζn∗

Length L∗ = u∗τ ∗

Distribution function f ∗ =
n∗

(u∗)3

Electric field E∗ =
T ∗

q∗L∗

Thermal conductivity κ∗ =
(T ∗)5/2

ζ
√
m∗

Table D.1: Reference quantities.

207

Appendix E

DERIVING THE BALANCE EQUATIONS FOR TOTAL MASS,
MOMENTUM AND ENERGY

We first derive equation (4.2.11),

2(nU)α =
3nαTα
mα

+ nu2||.

Proof. If fα is an arbitrary distribution with number density nα, bulk velocity u =

u||û|| + 0û⊥, and temperature Tα, then 3nαTα = mα⟨fα, |v − u|2⟩.

2(nU)α = 2

〈
fα,

v2⊥ + v2||
2

〉
= ⟨fα, (v|| − u||)2 + u2|| + v2⊥⟩+ ⟨fα, 2u||(v|| − u||)⟩︸ ︷︷ ︸

=0 by symmetry

= ⟨fα, (v|| − u||)2 + (v⊥ − 0)2⟩+ ⟨fα, u2||⟩

=
3nαTα
mα

+ nu2||.

Deriving the zeroth-order moment of equation (4.2.1) given in equations (4.2.9).

Proof. Taking the zeroth-order moment of equation (4.2.1),

∂n

∂t
+

∂

∂x
(nu||) +

qα
mα

E||

〈
∂fα
∂v||

, 1

〉
︸ ︷︷ ︸

(∗)

= ⟨Cαα, 1⟩+ ⟨Cαe, 1⟩︸ ︷︷ ︸
(∗∗)

.

208

Term (∗) equals zero from integration by parts and assuming decay to zero at infinity.

The moments in term (∗∗) equal zero by collisional particle conservation. Integrating

over space,

0 =
d

dt

∫
Ωx

n(x, t)dx+
[
nu||
]
∂Ωx

.

Deriving the first-order moment of equation (4.2.1) given in equations (4.2.9).

Proof. Taking the first-order moment of equation (4.2.1) in v||,

∂

∂t
(nu||) +

∂Sα

∂x
+

qα
mα

E||

〈
∂fα
∂v||

, v||

〉
︸ ︷︷ ︸

(∗)

= ⟨Cαα, 1⟩+ ⟨Cαe, 1⟩︸ ︷︷ ︸
(∗∗)

.

Term (∗) equals −n from integration by parts and assuming decay to zero at infinity.

The moments in term (∗∗) equal zero by collisional momentum conservation. Using

Ohm’s law to express the electric field,

∂

∂t
(nu||) +

∂Sα

∂x
− qα
mαqe

∂pe
∂x

= 0.

Since pe = nTe by quasi-neutrality,

∂

∂t
(nu||) +

∂Sα

∂x
− qα
mαqe

∂

∂x
(nTe) = 0.

Integrating over space,

0 =
d

dt

∫
Ωx

(nu||)(x, t)dx+

[
Sα −

qαnTe
qemα

]
∂Ωx

.

Deriving the second-order moment of equation (4.2.1) given in equations (4.2.9).

209

Proof. Taking the second-order moment of equation (4.2.1),

∂

∂t
(nU)α +

∂Qα

∂x
+

qα
mα

E||

〈
∂fα
∂v||

,
v2|| + v2⊥

2

〉
︸ ︷︷ ︸

(∗)

=

〈
Cαα,

v2|| + v2⊥

2

〉
︸ ︷︷ ︸

(∗∗)

+

〈
Cαe,

v2|| + v2⊥

2

〉
.

Term (∗) equals −nu|| from integration by parts and assuming decay to zero at infinity.

The moment in term (∗∗) equals zero from the energy conservation of like-species

Coulomb collisions. However, the second-order moment of the ion-electron Coulomb

collision is not zero (or negligible). Using Ohm’s law to express the electric field, and

equation (4.2.12),

∂

∂t
(nU)α +

∂Qα

∂x
− qα
mαqe

u||
∂pe
∂x

=
3ναen

mα

(Te − Tα).

Adding the fluid-electron energy equation (4.2.13),

∂

∂t

(
(nU)α +

3

2
pe

)
+
∂

∂x

(
Qα +

5

2
u||pe

)
−
(

qα
mαqe

+ 1

)
u||
∂pe
∂x

− ∂

∂x

(
κe,||

∂Te
∂x

)
=

(
1

mα

− 1

)
3ναen(Te − Tα).

Since we are working with the nondimensionalized model (see Appendix D), mα = 1.

This, along with the additional assumption that qα = −qe in our applications of interest,

reduces the energy balance equation to

∂

∂t

(
(nU)α +

3

2
pe

)
+
∂

∂x

(
Qα +

5

2
u||pe

)
− ∂

∂x

(
κe,||

∂Te
∂x

)
= 0.

Integrating over space,

0 =
d

dt

∫
Ωx

(
(nU)α +

3

2
neTe

)
(x, t)dx+

[
Qα +

5

2
u||nTe − κe,||

∂Te
∂x

]
Ω∂x

.

210

Deriving the reduced kinetic fluxes (4.2.7) from kinetic fluxes (4.2.6).

Proof. Assuming fα is an arbitrary distribution function, the temperature and perpen-

dicular temperature are

Tα
.
=
mα⟨|v − u|2, fα⟩

3⟨1, fα⟩
, Tα,⊥

.
=
mα⟨v2⊥, fα⟩
2⟨1, fα⟩

.

Moreover, Tα = Tα,⊥ = Tα,||. Thus,

Sα = ⟨v||fα, v||⟩

= ⟨v2||, fα⟩

= ⟨v2|| + v2⊥, fα⟩ − ⟨v2⊥, fα⟩

= 2(nU)α −
2nTα,⊥
mα

=
3nTα
mα

+ nu2|| −
2nTα
mα

=
nTα
mα

+ nu2||.

Deriving the reduced kinetic flux Qα falls out of the change of variables w = v−u, that

is, w|| = v|| − u|| and w⊥ = v⊥. Let ⟨·, ·⟩v denote the L2 inner product (in cylindrical

coordinates with azimuthal symmetry) with respect to v, and let ⟨·, ·⟩w denote the L2

inner product (in cylindrical coordinates with azimuthal symmetry) with respect to w.

First note that

v2|| + v2⊥ = v2|| − u2|| + u2|| + v2⊥ = (v|| − u||)2 + 2(v|| − u||)u|| + u2|| + v2⊥.

With this relationship,

Qα =

〈
v||fα,

v2|| + v2⊥

2

〉
v

=
1

2

〈
v||fα, v

2
|| − u2|| + u2|| + v2⊥

〉
v

=
1

2

〈
(w|| + u||)fα, w

2
|| + 2w||u|| + u2|| + w2

⊥

〉
w
.

211

After expanding, all terms with odd powers of w|| equal zero by symmetry.

Qα =
1

2
u||⟨w2

||, fα⟩w + u||⟨w2
||, fα⟩w +

1

2
u3||⟨1, fα⟩w +

1

2
u||⟨w2

⊥, fα⟩w

=
1

2
u||⟨w2

|| + w2
⊥, fα⟩w + u||⟨w2

||, fα⟩w +
1

2
u3||⟨1, fα⟩w

=
3nTαu||
2mα

+ u||⟨v2|| − 2u||v|| + u2||, fα⟩v +
nu3||
2

=
3nTαu||
2mα

+ u||(Sα − 2nu2|| + nu2||) +
nu3||
2

=
3nTαu||
2mα

+ u||

(
nTα
mα

+ nu2|| − nu2||
)
+
nu3||
2

= u||

(
1

2

(
3nTα
mα

+ nu2||

)
+
nTα
mα

)

= u||

(
(nU)α +

nTα
mα

)
.

If fα is an arbitrary distribution function, then by the reduced kinetic fluxes the nondi-

mensional balance equations for total mass, momentum and energy are

0 =
d

dt

∫
Ωx

n(x, t)dx+
[
nu||
]
∂Ωx

,

0 =
d

dt

∫
Ωx

(nu||)(x, t)dx+

[
nTα
mα

+ nu2|| −
qαnTe
qemα

]
∂Ωx

,

0 =
d

dt

∫
Ωx

(
(nU)α +

3

2
neTe

)
(x, t)dx+

[
u||

(
(nU)α +

nTα
mα

)
+

5

2
u||nTe −

3.2T
5/2
e√

2me

∂Te
∂x

]
Ω∂x

.

212

Appendix F

STENGER QUADRATURE NODES AND WEIGHTS

Found in [79, 160], let z ∈ C with Re(z) ≤ −1. Then for each K ∈ N the

quadrature nodes and weights (for j = −K, ...,K)

hst := π2/
√
K (F.0.1a)

tj := log
(
exp(jhst) +

√
1 + exp(2jhst)

)
(F.0.1b)

wj := hst/
√

1 + exp(−2jhst) (F.0.1c)

satisfy the error estimate∣∣∣∣∣∣
∫ ∞

0

exp(tz)dt−
K∑

j=−K

wjexp(tjz)

∣∣∣∣∣∣ ≤ Cstexp(|Im(z)|/π)exp(−π
√
2K), (F.0.2)

where Cst is a constant independent of z and K.

213

Appendix G

A QUASI-NEWTON SOLVER FOR THE MACROSCOPIC SYSTEM

For i = 1, 2, ..., Nx,

(
R(ℓ)

nu||

)
i
= (nu||)

(ℓ)
i − (nu||)

k
i +

∆t

∆x

(
Ŝk
α,i+ 1

2
− Ŝk

α,i− 1
2

)
− ∆t

2∆x

qα
mαqe

(
nk+1
i+1 T

(ℓ)
e,i+1 − nk+1

i−1 T
(ℓ)
e,i−1

)
,

(G.0.1a)

(
R

(ℓ)
(nU)α

)
i
= (nU)

(ℓ)
α,i − (nU)kα,i +

∆t

∆x

(
Q̂k

α,i+ 1
2
− Q̂k

α,i− 1
2

)
− 3∆t

√
2
√
me

m2
α

(nk+1
i)2

(T
(ℓ)
e,i)

3/2

(
T

(ℓ)
e,i −

mα

3

(
2U

(ℓ)
α,i − (u

(ℓ)
||,i)

2
))

− ∆t

2∆x

qα
mαqe

u
(ℓ)
||,i

(
nk+1
i+1 T

(ℓ)
e,i+1 − nk+1

i−1 T
(ℓ)
e,i−1

)
,

(G.0.1b)

(
R

(ℓ)
Te

)
i
= nk+1

i T
(ℓ)
e,i − nk

i T
k
e,i +

5∆t

3∆x

(
uk||,i+ 1

2
n̂T

k

e,i+ 1
2
− uk||,i− 1

2
n̂T

k

e,i− 1
2

)
− ∆t

3∆x
u
(ℓ)
||,i

(
nk+1
i+1 T

(ℓ)
e,i+1 − nk+1

i−1 T
(ℓ)
e,i−1

)
− 2∆t

3∆x2

(
κ
(ℓ)

e,||,i+ 1
2

(T
(ℓ)
e,i+1 − T

(ℓ)
e,i)− κ

(ℓ)

e,||,i− 1
2

(T
(ℓ)
e,i − T

(ℓ)
e,i−1)

)
− 2∆t

√
2
√
me

mα

(nk+1
i)2

(T
(ℓ)
e,i)

3/2

(
mα

3

(
2U

(ℓ)
α,i − (u

(ℓ)
||,i)

2
)
− T (ℓ)

e,i

)
.

(G.0.1c)

(
P(ℓ)

nu||,nu||

)
i,j

=


1, j = i,

0, otherwise.

(G.0.2)

(
P

(ℓ)
nu||,(nU)α

)
i,j

= 0, ∀i, j. (G.0.3)

214

(
P

(ℓ)
nu||,Te

)
i,j

=



∆t

2∆x

qα
mαqe

nk+1
i−1 , j = i− 1,

− ∆t

2∆x

qα
mαqe

nk+1
i+1 , j = i+ 1,

0, otherwise.

(G.0.4)

(
P

(ℓ)
(nU)α,nu||

)
i,j

=


− ∆t

2∆x

qα
qe

1

nk+1
i

(
nk+1
i+1 T

(ℓ)
e,i+1 − nk+1

i−1 T
(ℓ)
e,i−1

)
, j = i,

0, otherwise.

(G.0.5)

(
P

(ℓ)
(nU)α,(nU)α

)
i,j

=


1, j = i,

0, otherwise.

(G.0.6)

(
P

(ℓ)
(nU)α,Te

)
i,j

=



∆t

2∆x

qα
qe
(nu||)

(ℓ)
i

nk+1
i−1

nk+1
i

, j = i− 1,

− ∆t

2∆x

qα
qe
(nu||)

(ℓ)
i

nk+1
i+1

nk+1
i

, j = i+ 1,

0, otherwise.

(G.0.7)

(
P

(ℓ)
Te,nu||

)
i,j

=


− ∆t

3∆x

1

nk+1
i

(
nk+1
i+1 T

(ℓ)
e,i+1 − nk+1

i−1 T
(ℓ)
e,i−1

)
, j = i,

0, otherwise.

(G.0.8)

(
P

(ℓ)
Te,(nU)α

)
i,j

= 0, ∀i, j. (G.0.9)

215

(
P

(ℓ)
Te,Te

)
i,j

=



∆t

3∆x
(nu||)

(ℓ)
i

nk+1
i−1

nk+1
i

+
∆t

3∆x2
3.2√
2
√
me

(
5

2
(T

(ℓ)
e,i−1)

3/2
(
T

(ℓ)
e,i − T

(ℓ)
e,i−1

)
−
(
(T

(ℓ)
e,i−1)

5/2 + (T
(ℓ)
e,i)

5/2
))

, j = i− 1,

nk+1
i − ∆t

3∆x2
3.2√
2
√
me

(
5

2
(T

(ℓ)
e,i)

3/2
(
T

(ℓ)
e,i+1 − T

(ℓ)
e,i

)
−
(
(T

(ℓ)
e,i)

5/2 + (T
(ℓ)
e,i+1)

5/2
)
− 5

2
(T

(ℓ)
e,i)

3/2
(
T

(ℓ)
e,i − T

(ℓ)
e,i−1

)
−
(
(T

(ℓ)
e,i−1)

5/2 + (T
(ℓ)
e,i)

5/2
))

, j = i,

− ∆t

3∆x
(nu||)

(ℓ)
i

nk+1
i+1

nk+1
i

− ∆t

3∆x2
3.2√
2
√
me

(
5

2
(T

(ℓ)
e,i+1)

3/2
(
T

(ℓ)
e,i+1 − T

(ℓ)
e,i

)
+
(
(T

(ℓ)
e,i)

5/2 + (T
(ℓ)
e,i+1)

5/2
))

, j = i+ 1,

0, otherwise.

(G.0.10)

216

Appendix H

PERMISSIONS

Here we state the permissions for the content contained in Chapter 2. The

content that references or is contained in Chapter 2, Sections 2.2-2.5 is derived and/or

taken from the paper An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-

FV) method for solving convection and diffusion equations, published in the Journal

of Computational Physics, 470 (2022), pp. 111589. This includes the portions of

the abstract and Chapter 1 that overview the method presented in Chapter 2. The

copyrights are owned by Elsevier, and the original publication is correctly cited [133]

throughout this dissertation. Below, we attach screenshots from Elsevier’s website on

their copyright policy. Note the policy statements pertaining to the use of material

in an author’s thesis or dissertation, and the non-requirement of Elsevier’s written

permission.

217

Figure H.1: Elsevier’s copyright permission for authors (screenshot 1).
https://www.elsevier.com/about/policies/copyright (link here).

Figure H.2: Elsevier’s copyright permission for authors (screenshot 2).
https://www.elsevier.com/about/policies/copyright/permissions (link here).

218

https://www.elsevier.com/about/policies/copyright
https://www.elsevier.com/about/policies/copyright/permissions

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Kinetic models vs fluid models
	1.1.1 Starting with a kinetic model
	1.1.2 Deriving a fluid model from a kinetic model
	1.1.3 The moment closure problem

	1.2 Eulerian, Lagrangian and Eulerian-Lagrangian frameworks
	1.2.1 Eulerian framework
	1.2.2 Lagrangian framework
	1.2.3 Eulerian-Lagrangian framework

	1.3 The proposed schemes
	1.3.1 An Eulerian-Lagrangian scheme for convection-diffusion equations
	1.3.2 A low-rank Eulerian scheme for diffusion equations
	1.3.3 A low-rank Eulerian scheme for the Vlasov-Fokker-Planck equation

	1.4 Organization of the dissertation

	2 An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations
	2.1 Review of technical components
	2.1.1 Spatial reconstructions: WENO and WENO-AO
	2.1.1.1 WENO5
	2.1.1.2 WENO-AO(5,3)

	2.1.2 Time discretizations: Runge-Kutta methods
	2.1.2.1 Strong stability-preserving Runge-Kutta methods
	2.1.2.2 Implicit-explicit Runge-Kutta methods

	2.1.3 Operator splitting
	2.1.3.1 First-order Lie-Trotter splitting
	2.1.3.2 Second-order Strang splitting
	2.1.3.3 Higher-order splitting

	2.1.4 Gauss-Legendre quadrature

	2.2 The EL-RK-FV method for pure convection problems
	2.2.1 Scheme formulation
	2.2.2 Solution remapping onto a traceback grid
	2.2.3 Reconstruction of point values
	2.2.4 Time evolution with explicit Runge-Kutta methods
	2.2.5 Two-dimensional problems
	2.2.5.1 Going from/to cell averages to/from interval averages
	2.2.5.2 A demonstration with Strang splitting

	2.3 The EL-RK-FV method for convection-diffusion equations
	2.3.1 Computing the uniform cell averages of uxx
	2.3.2 Time evolution with implicit-explicit Runge-Kutta methods
	2.3.3 Mass conservation

	2.4 Numerical tests
	2.4.1 Pure convection problems: one-dimensional tests
	2.4.2 Pure convection problems: two-dimensional tests
	2.4.3 Convection-diffusion equations: one-dimensional tests
	2.4.4 Convection-diffusion equations: two-dimensional tests

	2.5 Conclusions and follow-up work

	3 Implicit low-rank integrators for solving diffusion equations
	3.1 Review of technical components
	3.1.1 Tensor decompositions
	3.1.1.1 Singular value decomposition (SVD)
	3.1.1.2 QR factorization
	3.1.1.3 CP decomposition

	3.1.2 Low-rank tensor approaches for time-dependent PDEs
	3.1.2.1 Step-and-truncate methods
	3.1.2.2 Dynamical low-rank (DLR) methods

	3.1.3 von Neumann stability analysis
	3.1.3.1 Backward Euler (bE)
	3.1.3.2 Crank-Nicolson (CN)
	3.1.3.3 Backward differentiation formula (BDF2)
	3.1.3.4 Diagonally implicit Runge-Kutta (DIRK2)

	3.2 The implicit low-rank scheme
	3.2.1 A first-order scheme using backward Euler
	3.2.2 A second-order scheme using DIRK2
	3.2.3 Computational complexity
	3.2.3.1 Computational complexity of solving the Sylvester equation
	3.2.3.2 Computational complexity of the proposed scheme

	3.3 Numerical tests
	3.3.1 CPU runtime
	3.3.2 Convergence analysis
	3.3.3 Rank evolution

	3.4 Conclusions and follow-up work

	4 A low-rank tensor scheme with structure-preserving qualities for solving the 1D2V Vlasov-Fokker-Planck equation
	4.1 Review of technical components
	4.1.1 A structure-preserving Chang-Cooper (SPCC) discretization in Cartesian coordinates
	4.1.2 A matrix exponential-based solver for large linear systems of tensor-product structure

	4.2 Discretizing the 1D2V Vlasov-Leonard-Bernstein-Fokker-Planck equation
	4.2.1 The macroscopic system and kinetic fluxes
	4.2.2 Scheme formulation: discretizing in physical space-time
	4.2.3 Scheme formulation: discretizing in velocity space
	4.2.3.1 Computing the macroscopic quantities
	4.2.3.2 Discretizing the collision operator
	4.2.3.3 Discretizing the acceleration term

	4.3 Updating and truncating the discretized equation
	4.3.1 Solving a linear system of tensor-product structure
	4.3.2 SVD truncation
	4.3.3 The first-order scheme

	4.4 Numerical tests
	4.4.1 The 0D2V Leonard-Bernstein-Fokker-Planck equation
	4.4.2 The 1D2V Vlasov-Leonard-Bernstein-Fokker-Planck equation

	4.5 Conclusions and follow-up work

	Bibliography
	A An illustrative example with IMEX(2,2,2)
	B The second-order scheme with Crank-Nicolson
	C The second-order scheme with BDF2
	D Nondimensionalizing the 1D2V Vlasov-Leonard-Bernstein-Fokker-Planck equation in cylindrical coordinates
	E Deriving the balance equations for total mass, momentum and energy
	F Stenger quadrature nodes and weights
	G A quasi-Newton solver for the macroscopic system
	H Permissions

